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Abstract
Our work is entirely constructive; none of the mathematics developed uses the

excluded middle or any choice axioms. No use is made of a natural numbers object.

We get a glimpse of the parallel between the preframe approach and the SUP-
lattice approach to locale theory by developing the preframe coverage theorem and
the SUP-lattice coverage theorem side by side and as examples of a generalized
coverage theorem.

Proper locale maps and open locale maps are de�ned and seen to be parallel.
We argue that the compact regular locales are parallel to the discrete locales. It is
an examination of this parallel that is the driving force behind the thesis.

We proceed with examples: relational composition in Set can be expressed as
a statement about discrete locales; we then appeal to our parallel and examine
relational composition of closed relations of compact regular locales. A technical
achievement of the thesis is the discovery of a preframe formula for this relational
composition.

We use this formula to investigate ordered compact regular locales (where the
order is required to be closed). We �nd that Banaschewski and Br�ummer's compact
regular biframes (Stably continuous frames [Math. Proc. Camb. Phil. Soc. (1988)
104 7-19]) are equivalent to the compact regular posets with closed partial order.
We also �nd that the ordered Stone locales are equivalent to the coherent locales.
This is a localic, and so constructive, version of Priestley's duality.

Further, using this relational composition, we can de�ne the Hausdor� systems
as the proper parallel to Vickers' continuous information systems (Information sys-

tems for continuous posets [Theoretical Computer Science 114 (1993) 201-229]) The
category of continuous information systems is shown by Vickers to be equivalent to
the (constructively) completely distributive lattices; we prove the proper parallel
to this result which is that the Hausdor� systems are equivalent to the stably lo-
cally compact locales. This last result can be viewed as an extension of Priestley's
duality.
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Introduction

Say we are given a topological space X and are required to describe the set of
opens of the product space X �X . The obvious answer is to look at the following
subsets of X �X :

U � V = f(u; v)ju 2 U; v 2 V g

where U; V are arbitary opens of X . We note that the collection of all such sets i.e.

� � fU � V jU; V are open subsets of Xg

is closed under �nite intersections. (Since (U1�V1)\(U2�V2) = (U1\U2)�(V1\V2).)
So � forms a basis for a topology. We form the whole topology by taking all unions
of sets of the form U � V , i.e. by taking the least sub(SUP-lattice) of P (X �X)
generated by �. (Recall that a SUP-lattice is a poset with arbitary joins, and so
the union operation tells as that P (A) is a SUP-lattice for any set A.)

There is, however, a parallel solution to this problem. Look at the following
subsets of X �X :

UOV � f(u; v)ju 2 U or v 2 V g

where again U; V are open subsets of X . It is easy to check that (U1OV1) [
(U2OV2) = (U1 [ U2)O(V1 [ V2), and so we conclude that the collection

 � fUOV jU; V are open subsets of Xg

is closed under �nite unions. We want to generate a topology from , and so we
need a collection of subsets (of X � X) that is closed under arbitary unions and
�nite intersetions. It is a well known (lattice theoretic) fact that an arbitary union
can always be expressed as a directed union of �nite unions. For if (Bi)i2I is a
collection of subsets of some set A, then

[i2IBi =
S"
f�Ij�I�I;�I �nite g

([i2�IBi)

The " on [ indicates that the union is a union of a directed set. i.e. the set is
non-empty and if a; b are in the set then there exists c in the set such that a; b � c.

Now  is closed under �nite unions, so all we need to do is close it with respect
to directed unions and �nite intersections in order to create a topology. De�ne �
to be the collection of all directed unions of �nites intersections of elements of .
It can be seen that � is closed under directed unions and �nite intersections. i.e.
it is a subpreframe of P (X �X). Clearly it is the least subprefame of P (X �X),
containing  and �nally (by distributivety of P (X � X) ) � is closed under �nite
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unions. So � forms a topology.
We have now de�ned two topologies for X � X ; one is the least sub(SUP-lattice)
of P (X �X) containing all the sets U �V for U; V open in X , and the other is the
least subpreframe of P (X � X) containing all the sets of the form UOV for U; V
open in X .
But

UOV = (U �X) [ (X � U)
U � V = (UO�) \ (�OV )

and so a short proof allows us to conlcude that these two toplogies are the same.
We could hase used either approach in order to de�ne the product topology.

The example just given is the most straightforward way of describing the par-
allel which forms the backbone to this thesis: there are two ways of looking at any
topology, as a free SUP-lattice or as a free preframe.
However it must be emphasised that the work presented here is not about topologi-
cal spaces. The example above is couched in topological language in order to make
it more accessible: this is a thesis about locale theory.

Locale Theory

The �rst thing to say about locales is that they are like topological spaces. Lo-
cale theory is de�ned so that we can treat locales as if they are topological spaces:
we talk of sublocales (cf subspaces), special cases being dense, closed and open
sublocales (cf dense, closed and open subspaces). We talk of continuous maps be-
tween locales (cf continuous maps between topological spaces), special cases being
proper maps and open maps (cf proper and open continuous functions between

spaces). We talk of compact locales (cf compact topological spaces), and similarly
most of the usual separation axioms on topological spaces have their localic trans-
lations: e.g. we talk of compact Hausdor� locales and discrete locales (cf compact
Hausdor� spaces and discrete spaces).

This analogy between locale theory and topological space theory is not exact: if
it were locale theory and topological space theory would be indistinguishable and
so locale theory would be redundant.

What exists is a translating device between the two theories: whenever we are
given a locale X there is a topological space ptX naturally associated with it. And
whenever we are given a topological space Y there is a locale 
Y naturally associ-
ated with it. Categorically what this means is that there is a pair of functors going
inbetween the category Loc of locales and the category Sp of topological spaces.

pt :Loc�!Sp


 : Sp �!Loc

Now say we are given a locale X and we translate it into a space (ptX) and then
translate it back into a locale (
ptX): do we come back to the same locale? Simi-
larly, if we are given a space Y , is pt
Y the same thing (up to isomorphism) as Y ?
The answer is no, in general, since if we did get the same thing then the translation
would be exact.
However the collection of all topological spaces Y such that pt
Y is the same thing
as Y is important: we shall call these the sober spaces. Similarly the collection of
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locales X such that 
ptX is X is important: these are the spatial locales. What
is important about these collections is that if we restrict our attention to the sober
spaces and to the spatial locales then the restricted translations are exact i.e. the
theory of sober spaces and the theory of spatial locales are the same. Categorically
this means that there is an equivalence

SLoc�=Sob

where Sloc is the category of spatial locales and Sob is the category of sober spaces.
So the next question is: how many spaces are sober? i.e. is the collection of sober
spaces large enough to include most of the examples of topological spaces that are
actually used in practice? The answer to this question, fortunately for locale theory,
is yes.

\... in e�ect, one sacri�ces a small amount of pathology (non-sober
spaces) in order to achieve a category that is more smoothly and purely
`topological' than the category of spaces itself. " [Joh85]

This is a good reason to take a serious look at locale theory: in practice when we
study topological spaces we are almost always looking at sober spaces and so we
might as well be working within the category of locales.
There are, however, much more compelling reasons why the category of locales
should be considered the correct framework within which to do topology: the study
of locales is, in a sense, logically purer than the study of topological spaces. Proving
results in locale theory requires less axioms of our mathematics than the correspond-
ing proofs in topological space theory.
A discussion of these axioms and how the need for them is removed by looking at
locale theory will lead us to a point where the results of this thesis start.

Axioms

The law of excluded middle has a long history in mathematics. It is widely accepted
as being true. Our intuitions about the real world indicate that statements are either
true or false and so it understandable that the statment

(8p)(p _ :p)

has been allowed as an axiom of our mathematics. In the work that follows we
prove results and develop some theory that does not require this axiom to be true.
Mathematics without this axiom (the intuitionistic approach) has a long history
aswell. Earlier this century Brouwer and Heyting both tried to develop an intuitis-
tionistic version of mathematics (for a good introduction look at [TD88]). It is the
relatively new idea of a topos however that gives us some more impetus for taking
the intuitionistic approach seriously.

Toposes are mathematical universes. Some toposes are Boolean (satisfy the law
of excluded middle) but there are enough non-Boolean naturally occuring toposes
to make it clear that there are important mathematical universes where the law of
excluded middle fails. So if we want to be sure that our mathematics can be carried
out in any topos (=mathematical universe) then we must make sure that it is not
dependent on the law of excluded middle.

Very often the dependence of a topological proof on the law of excluded middle
vanishes when we translate it into a proof about locales. This is one of the pay-o�s
of locale theory. We achieve a proof that is logically purer: it can be carried out
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in any topos. Interestingly enough the fact that dependence on excluded middle
vanishes is really only the icing on the cake: historically the reason why mathe-
maticians looked at locales was to avoid dependence on an axiom that has an even
more tenuous connection with reality: the axiom of choice.

The axiom of choice states that if Xi is a collection of non-empty sets (where i
ranges over some indexing set I) then the product

Q
iXi is non-empty. One may or

may not �nd this axiom in agreement with ones intuitions of how in�nite products
of sets should behave. Certainly this axiom caused many more logical `waves' when
its importance to mathematics was discovered than did the law of excluded middle.
But it was found that a lot of mathematical results used it: one of the most famous
examples being the proof that the product of compact topological spaces is always
compact (this is Tyhchono�'s theorem; recall that a topological space X is compact

if for any directed collection of opens (Ui)i2I we have that X � [
"

iUi implies that
X � Ui for some i 2 I). Indeed it was shown that some of these results not only
used the axiom of choice but they needed it, i.e. an assumption of the result leads
to a proof of the axiom of choice. Given this fact and the general usefulness of
the axiom it is understandable that certain pathologies that could be derived from
it (e.g. the Tarski-Banach paradox, see pp. 3-6 of [Jec73]) were ignored . Indeed
the task of developing a `choice free' mathematics would seem impossible given the
dependency results just referred to: if we want the Tychono� theorem (and for any
useful topology we most certainly do) then we need the axiom of choice.
Unless we change the de�nition of topology.
This is exactly what we do when we move to locales. By tampering slightly with
the de�nition of a topological space we achieve a new category in which to carry out
our topological results. Crucially we �nd that the Tychono� theorem can now be
proved without the axiom of choice. The mathematics of locale theory is `choice free'.

Of course the question remains as to whether locale theory is really topology.
One of the main problems of locale theory is to translate the ideas, concepts and
�nally results of topological space theory. The translating device referred to earlier
does not completely solve this problem. An aim of locale theory and of this thesis
is to carry out this translation further.

If we take another look at the Tychono� theorem, and in particular the de�-
nition of compactness we see that it is a `preframe' result; it is saying something
about directed unions. Also, it is dependent on the de�nition of product spaces. As
we have shown, (in the �rst part of this introduction) there are two equivalent ways
of de�ning such products. This fact has a localic analogue: a product locale (indeed
any locale) can be treated as a free SUP-lattice or as a free preframe. As with top-
logical spaces it was the SUP-lattice de�nition that was originally accepted as the
de�nition of a product locale and when Johnstone originally proved the Tychono�
theorem for locales (in [Joh81]) he used the SUP-lattice de�nition of the product.
But the Tychono� theorem is a `preframe' result and so it is pleasing to note that
once the equivalent preframe de�nition of a product locale had been worked out
([JV91]), the proof of the Tychono� theorem was greatly simpli�ed. This exempli-
�es a lot of the work that will take place in this thesis: if we are dealing with a
result about compactness we need to look at the locales concerned as free preframes
rather than as free SUP-lattices. Once the preframe de�nition is taken the algebraic
manipulations become a lot easier.

The parallel between the SUP-lattice approach and the preframe approach leads
naturally to the consideration of two classes of locales: the compact Hausdor� lo-
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cales and the discrete locales. These turn out to be parallel to each other in much
the same way that the SUP-lattice and the preframe de�nitions are parallel. The
details of how these two approaches �t together, applications of them (such as a
constructive proof that the category of compact Hausdor� locales is regular), and
how knowledge about theorems on one side of the parallel can help us prove parallel
results on the other side forms the core of this thesis.
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Technical Introduction

Chapter 1 is devoted to the basics of locale theory. The �rst section is devoted
to mathematical ground rules. All results are constructive: we are working in an
arbitary topos. Or, more succintly, no use is made of any of the choice axioms or the
excluded middle. It is sometimes not completely clear what the word `�nite' means
in an arbitary topos and so some e�ort is taken to clarify that we mean Kuratowski
�nite.

We do not assume a natural number object in our topos. So care is needed
to make that we can de�ne the free Boolean algebra on a distributive lattice; we
adapt Vickers' congruence preorders ([6.2.3] of [Vic89]) in order to prove that such
a free Boolean algebra exists. Later on in the chapter care is also needed to make
sure that the Prime Ideal Theorem can be disccused without assuming the excluded
middle (since usual statments of the theorem contain a negation). We introduce
the constructive prime ideal theorem.

In Chapter 2 there are two new o�erings. Firstly there is the realization that
K�r�i�z's precongruences [K�r�i�z86] can also be used on preframes. It is easy to see what
a preocngruence on a preframe should be, and we have a preframe universal result
which is just a restating of K�r�i�z's frame universal result. This preframe universal
result essentially tells us that preframe presentations present; and it is this fact
that enables us to view frames as preframes. i.e. to construct frame coproduct from
preframe tensor and to prove a preframe version of the coverage theorem.
The next o�ering is a generalized coverage theorem. This theorem is a statement
about any symmetric monoidal closed category C: it shows us how coequalizers can
be constructed in the category of monoids over C from coequalizers in C. Given
further assumptions on C (for instance that a free commutative monoid can be con-
structed on any C object and C has image factorizations) we prove a result which
can be viewed as a converse to the coverage theorem: coequalizers in C can be cal-
culated as images of certain coequalizers in the category of commutative monoids
over C. Standing alone both these results are straightforward to prove. They are
interesting in this context because from them we can discover a plethora of other
results. The main results are the coverage theorems: not only do we get the SUP-
lattice and the preframe versions of the coverage theorem we also get a coverage
theorem for quantales and rings. Because of the converse of the coverage theorem
we are able, from the construction of coequalizers in the category of SUP-lattices,
to construct coequalizers in the category of directed complete partial orders (=dc-
pos). The coverage theorem applied to dcpos then implies that coequalizers exists
in the category of preframes. i.e. we have with these results reproved that preframe
presentations present.

What is being o�ered here doesn't add any new mathematical results. Once
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the `Preframe Presentations Present' paper [JV91] is understood we know that the
category of preframes has coequalizers, and this fact for dcpos is of course well
known. What we now have is an ability to see that all these theorems stem from
the same results that can be proved when you consider the category of commutative
monoids over any symmetric monoidal closed category C. i.e. they are all variations
on the same theme, the theme being that there are ways of lifting and droping co-
equalizers between the category C and the category of commutative monoids over C.

Chapter 3 introduces proper and open maps between locales. We prove some
basic (well knwon) results about them. The investigation is much as in Joyal and
Tierney's paper An extension of the Galois theory of Grothendieck [JT84] the only
new aspect being that we develop the theory of open and proper maps side by side.
So it is quite clear, for instance, that the proof that proper maps are pullback stable
is really just a repetition of the proof that open maps are pullback stable but with
`has a left adjoint which is a SUP-lattice homomorphism' being replaced with `has
a right adjoint which is a preframe homomorphism'. The proper results are proved
in [Ver92]; the novelty is with our program of `parallel proofs for parallel results'.
Towards the end of the Chapter we prove that the discrete locales are those whose
�nite diagonals are open and the compact regular locales are those whose �nite
diagonals are proper. The former result is in [JT84] and the latter result is in Ver-
meulen's paper `Some Constructive Results Related to Compactness' [Ver91]. Our
proof doesn't follow his: we use the preframe techniques that have been developed
in Chapter 2. Given this last result it should be understandable why, for the rest
of the text, we refer to the compact regular locales as the compact Hausdor� locales.

Another reason to state and prove these results side by side is to �x in the
reader's mind the idea that the compact Hausdor� locales are parallel to the dis-
crete locales in much the same way that the proper maps are parallel to the open
maps. As an aside we present an argument which shows that the constructive prime
ideal theorem is parallel to the excluded middle. We then check that the compact
Hausdor� locales form a regular category. Classically this fact follows from the
regularity of the category of compact Hausdor� spaces.

Once it is known that the compact Hausdor� locales form a regular category
we can immediately deduce that there is an allegory whose objects are compact
Hausdor� locales and whose morphisms are closed relations. Composition is given
by relational composition. We are of course assuming familiarity with the work ex-
plained in Chapter 1.5 of Freyd and Scedrov's book `Categories Allegories'; therein
is an explanation of how to construct an allegory of objects and relations from any
regular category. This leads us neatly to the main technical insight of the the-
sis which is that we can �nd a formula for relational compostion between closed
sublocales of compact Hausdor� locales. Chapter 4 starts with a description of this
formula.
Further there is the realization that just as spatially (when we are dealing with
relations on sets) we can talk about `lower closure of a subset with respect to a re-
lation', `a relation is transitive/symmetric/interpolative' etc we can state the same
notions for our allegory of compact Hausdor� locales and relations. In this case
lower closure (with respect to some closed relation) will correspond to an endo-
morphism on the set of closed sublocales (a closed sublocale is taken to its lower
closure). The formula for relational compostion allows us to express this endomor-
phism as a particular preframe endomorphism on the frame of opens of the compact
Hausdor� locale. In fact, just as in the spatial case where there is a well known
correspondence between arbitary relations on a set and SUP-lattice endomorphisms
on the power set we are able to �nd a bijection between preframe endomorphisms
and closed relations. This fact, expressed in generality, can be viewed as a categor-
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ical equivalence: the category of compact Hausdor� locales and formally reversed
preframe maps between them is equivalent to the allegory of compact Hausdor�
relations. Stated as an equivalence this result is new, however it should be noted
that the essence (i.e. the correpondence between preframe homomorphisms on the
frame of opens of compact Hausdor� locales and closed relations) can be found in
a result of Vickers' ([Vic94]) which states that if X is a compact Hausdor� locale
then,

PU (X) �= $X

where PU is the upper power locale construction and $ is the Sierpinsksi locale (i.e.
the locale whose frame of opens is the free frame on the terminal object of our back-
ground topos). This correspondence between preframe homomorphisms and closed
relations is used again and again. Essentially it is used to turn spatial intuitions
about what is going on into formulas about opens.

In Chapter 5 we look at ordered locales. Just as in ordered topological space
theory we �nd that the locales of interest are the compact Hausdor� ones. The
formulas that we have developed allow us to neatly reprove some basic results from
ordered toplogical space theory in a localic context. In particular we show that
there is a localic analogue to the result: if X is a compact order-Hausdor� poset

then the sets of the form U \ V , where U is an open upper set and V is an open

lower set, form a base for the topology on X . This leads us to the new conclusion
that Banaschewski and Br�ummer's category of compact regular biframes is dual to
the category of compact order-Hausdor� localic posets with order preserving locale
maps. This fact will be reused in Chapter 8 when we are looking at stably locally
compact locales.

Chapter 6 is called `Localic Priestley Duality'. It contains a proof that the
category of coherent locales is equivalent to the category ordered Stone locales.
Classically the ordered Stone locales are just the ordered Stone spaces which are,
by Priestley's original result, equivalent to the spectral spaces. This is one of the
main results of the thesis: we have taken a well known classical topological result
and proved it in a localic context. Some work has already been done in this direc-
tion: in Jean Pretorius' thesis [Pre93] there is a constructive proof that the coherent
locales are equivalent to a particular category which is classically equivalent to the
ordered Stone spaces. So what is new is the realization that this `particular cate-
gory' is equivalent to the ordered Stone locales i.e. it is the localic analog to the
ordered Stone spaces. We prove localic Priestley duality directly rather than go via
Pretorius' result.

Chapter 7 can roughly be understood as `extending Priestley's duality'. Infact,
the problem of extending from a categorical point of view can be solved with a
few remarks: Banaschewksi and Br�ummer [BB88] prove that the compact regular
biframes are dual to the stably locally compact locales with semi-proper maps and
we have seen (Chapter 5) that the compact regular biframes are dual to the com-
pact order-Hausdor� posets; so the compact order-Hausdor� posets are equivalent
to the stably locally compact locales with semi-proper maps. But ordered Stone
locales form a full subcategory of compact order-Hausdor� posets, and coherent
locales form a full subcategory of stably locally compact locales with semi-proper
maps: we have extended Priestley's duality.
This extension relies on constructing a compact order-Hausdor� poset from a stably
locally compact locale. Instead of going via Banaschewski and Br�ummer's construc-
tion [BB88] (which relies on the excluded middle in Lemma 3), we give a new con-
struction which reduces the amount of algebra required. However the main thrust of

14



the chapter is about a set of categorical equivalences which are between categories
that have similar objects to compact order-Hausdor� posets and stably locally com-
pact locales, but which have very di�erent morphims. Here motivation is important:
we are trying to discover the proper parallel to Vickers' results about continuous
information systems [Vic93]. Given that these results can be viewed as statements
about the allegory of sets and relations then it is clear what the proper parallels
should be. We discover a new proof which is easily seen to be the proper parallel to
the result that the category of continuous information systems and approximable
mappings is dually equivalent to the category of completely distributive lattices and
frame homomorphisms. It is also shown that variations of this equivalence (chang-
ing approximable maps to lower aprroximable semi-mappings and Lawson maps)
have proper parallels. We derive the proper parallel to Ho�man-Lawson duality on
continuous posets.
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Chapter 1

Locale Theory

1.1 Introduction

In this chapter we give an introduction to locale theory. Our main purpose is
to set notation and to reemphasise the constructivety of our results. The reader is
assumed to know what meets and joins on posets are, and what a distributive lattice
and a Boolean algebra is. We de�ne the category of locales and remind the reader

how the pt and 
 functors relate locales to the category of topological spaces. We
discuss how the algebraic dcpos and the continuous posets can be viewed as locales
that are constructively spatial. We develop the locale theory and introduce the
constructive prime ideal theorem which is classically equivalent to the ordinary
prime ideal theorem. We check that some well known classes of locales (e.g. the
Stone locales) are spatial if and only if the constructive prime ideal theorem is true.
Apart from the use of congruence preorders and the introduction of the constructive
prime ideal theorem all the results of this chapter are well known.

1.2 Mathematical Ground Rules

Essentially we work in an arbitrary topos. Rather than go into the details of this
we simply assume that we have sets, functions and subsets and manipulate them
in the usual way that is taught to �rst year undergraduates except we do not allow
use of the law of excluded middle or any of the choice axioms.

For motivation we will occasionally want to work classically i.e. we might want
to assume that the excluded middle and/or some choice axiom is true. Whenever
we are working classically a clear reference to this fact is made in the text.

The other piece of mathematical furniture that is to be removed is the natu-
ral numbers object. We remove it because we don't need it. All the proofs o�ered
are free of any need to enumerate things or to rely on the naturals in some other way.

A consequence of working in an arbitrary topos is that we are forced to think
more carefully about what it means for a set to be �nite. We can no longer rely on
just `counting' the elements of it. In fact the de�nition of �nite that we choose has
the property that it is not the case that subsets of �nite sets are necessarily �nite.
(For the details of this counter example see Exercise 9.2 of [Joh77].)

We use Kuratowski �nite for our de�nition of �nite. (As introduced by Ku-
ratowski in [Kur20]; however see [KLM75] which examines the de�nition in the

17
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context of an arbitrary topos.) We say that �A � A is a �nite subset of A if and
only if it belongs to the free _-semilattice generated by A (viewed as a subset of
PA). We can construct this free _-semilattice as the least subset X of PA such
that (i) � 2 X , (ii) if A1,A2 is in X then A1 [ A2 is in X and (iii) the image of
the singleton inclusion fg : A ! PA is in X . We give this construction explicitly
since the usual proof of a `presentations of �nite algebraic theories present' result
requires the natural numbers.
It is not immediately apparent that the construction just given is the free join semi-
lattice on X . To see that it is note that for any given function f : X ! A where A
is a join semilattice the set

f�I � X j _ ff(i)ji 2 �Ig existsg

contains all the singletons, the empty set and is closed under �nite unions. So
it contains FX and we can therefore de�ne a function �f : FX ! A such that
�f Æ fg = f .
To check that �f is the unique such join preserving map from FX to A, say g :
FX ! A is a join preserving map such that g Æ fg = f , then the set

fI � X jI 2 FX; g(I) = �f(I)g

contains singletons, the empty set and is closed under �nite union. Hence it is the
whole of FX . The proof that the the free semi-lattice on a set can be constructed
in a topos without a natural numbers object is originally due to Mikkelsen.

Reassuringly we have now described all the machinery that is needed. i.e. sets,
functions, subsets and the above de�nition of Kuratowski �nite is enough of a math-
ematical foundation to prove the rest of the thesis.

We go through some basic consequences of these assumptions.

Lemma 1.2.1 1, the terminal object in our background topos, is �nite.

Proof: 1 is the one element set, 1 = f�g. We need to show that 1 2 F1 where
F1 is the free _-semilattice on 1. F1 is the intersection of all X � P1 which are
closed under �nite unions and which contain the image of fg : 1 ! P1. Any such
X contains f�g = 1 and so 1 2 F1 as required. 2

Lemma 1.2.2 (Induction on �nite sets) Say p is a proposition about �nite subsets

of some set X (i.e. p � FX) such that p is satis�ed by the empty set and by all the

singletons fxg; x 2 X. If p also has the property that whenever p is satis�ed by I

and J then it is satis�ed by I [ J , then p is satis�ed by all �nite sets.

Proof: The statement of the lemma tells us that FX � p since FX is the least
subset of PX satisfying conditions that are satis�ed by p. 2

Lemma 1.2.3 The product of two �nite sets is �nite. i.e. if I 2 FX and J 2 FY

for two sets X;Y then I � J 2 F (X � Y )

Proof: Double induction. Consider the set:

� � fI � J jI 2 FX; J 2 FY g

We need to show that if � � P (X � Y ) is a set with the properties that

(i)f(x; y)g 2 � for every x 2 X and every y 2 Y
(ii) � 2 �

(iii) A;B 2 � then A [ B 2 �
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then � � �. First notice that certainly ��; �fyg � � where

�� � fI � �jI 2 FXg �fyg � fI � fygjI 2 FXg

The latter is by induction on FX . Finally for any J 2 FY de�ne �J = fI � J jI 2

FXg. To prove that � � � clearly it is suÆcient to verify that �J � � for every
�nite J . But we can conclude `for every �nite J ' by using using induction on FY .
We have started this induction with the statement ��; �fyg � � and shall now
complete it by checking that �J1 ; �J2 � � implies �J1[J2 � �. This follows from
the fact that � satis�es condition (iii) above. 2

Lemma 1.2.4 Say f : A! B is a function between sets A and B. Then the image

of any �nite subset of A is a �nite subset of B.

Proof: FA is the free join semilattice on the set A and so there exists a unique
join preserving map Ff making the diagram

A
fg - FA

B

f

?
fg- FB

Ff

?

commute. But when we proved that FA is the free join semilattice on A we were
able to give an explicit formula for Ff and from that formula it is clear that Ff is
just the usual set theoretic image map. 2

Lemma 1.2.5 A join semilattice (A;_; 0) has all �nite joins.

Proof: The set

fI 2 FAj
W
I exists g

contains the singletons and is closed under �nite unions. Hence it is the whole of
FA. 2

It is an easy application of the induction lemma given above to prove for any
distributive lattice A that

8I � A; I �nite, (
W
I) ^ b =

W
fa ^ bja 2 Ig

(we know fa^ bja 2 Ig is �nite since the image of any �nite set is �nite). Also note
that (FA)op is the free meet semilattice on A, and so we see that meet semilattice
(A;^; 1) has all �nite meets in much the same way that we saw that any join semi-
lattice has all �nite joins. We now look at a slightly more complicated distributivity
law:

Lemma 1.2.6 If A is a distributive lattice and (ai)i2I , (bi)i2I are �nite collections
of elements of A. (I �nite, or more precisely we assume I 2 FA.) Then

^i2I (ai _ bi) =
W
[(^i2J1ai) ^ (^i2J2bi)]

where the join is taken over all pairs J1; J2 � I such that I = J1[J2; J1; J2 �nite.

Proof: We have assumed I 2 FA and so it is natural to go by the induction
theorem already proven. The case when I = � is trivial. Say I = f�g. We need to
prove that
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a� _ b� =
W
[(^i2J1ai) ^ (^i2J2)]

where the join is over pairs of subsets J1; J2 � I such that I � J1 [ J2. But

a�; b� �
W
[(^i2J1a1) ^ (^i2J2bi)]

(take J1 = I J2 = � and then J1 = � J2 = I). Say we are given J1; J2 � I;

I � J1 [ J2 then we will be done with the case I = f�g if we can show

(^i2J1ai) ^ (^i2J2bi) � a� _ b�

Since I � J1 [ J2 then either � 2 J1 or � 2 J2. In the former case we have

(^i2J1ai) ^ (^i2J2bi) � a�

and in the latter we have,

(^i2J1ai) ^ (^i2J2bi) � b�

And so

(^i2J1ai) ^ (^i2J2bi) � a� _ b�

as required.

Now say we are given two �nite sets I�; I� (in FA) such that

^i2I�(ai _ bi) =
W
[(^i2J1ai) ^ (^i2J2bi)]

^i2I� (ai _ bi) =
W
[(^i2J1ai) ^ (^i2J2bi)]

Then

^i2I�[I� (ai _ bi) = (^i2I� (ai _ bi)) ^ (^i2I� (ai _ bi))

= (
_

[(^i2J�
1
ai) ^ (^i2J�

2
bi)] ^ (

_
[(^

i2J
�

1

ai) ^ (^
i2J

�

2

bi)])

=
_
[(^

i2J�
1
[J

�

1

ai) ^ (^
i2J�

2
[J

�

2

bi)]

where the last join is over quadruples J�1 ; J
�
2 (� I�); J

�
1 ; J

�
2 (� I�) such that

I� = J�1 [ J
�
2 and I� = J

�
1 [ J

�
2 . We want this last line to be equal to

W
I�[I�=J1[J2

[(^i2J1ai) ^ (^i2J2bi)]

However for any J1; J2 in this last join set J�i = Ji \ I� and set J�i = Ji \ I�

(i = 1; 2). So J�i ; J
�
i enjoy the property

I� = J�1 [ J
�
2

I� = J
�
1 [ J

�
2

We see Ji = J�i [ J
�
i for i = 1; 2 and so we see that

W
[(^i2J1ai) ^ (^i2J2bi)] �

W
[(^

i2J�
1
[J

�

1

ai) ^ (^
i2J�

2
[J

�

2

bi)]

The reverse inequality is easy. 2
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1.3 The free Boolean algebra

We now address the question of constructing the free Boolean algebra on a dis-
tributive lattice. It is not possible in our context to use the usual �nitary universal
algebraic proof (e.g. Chapter 1 of [Joh87]) since this requires the natural numbers.
We use a construction via congruence preorders which is equivalent to the more well
known (e.g. [Pre93]) construction via congruences.

If D is a distributive lattice then -� D�D is a congruence preorder if and only if
it satis�es

a � a0 - b0 � b ) a - b

(8S � D �nite) a - b 8a 2 S )

_
S - b

(8S � D �nite) a - b 8b 2 S ) a -
^
S

a - b; b - c ) a - c

a - a

These were suggested to the author by Vickers and are an adaptation of his frame
congruence preorders ([6.2.3] of [Vic89]).

Lemma 1.3.1 There is an order preserving bijection between the poset of congru-

ences on a distributive lattice and the poset of congruence preorders.

Proof: Take a congruence � to the congruence preorder - where a - b, a^b � b

and take a congruence preorder - to the congruence - ^ &. 2

Notice that the poset of congruence preorders on D (written ConP (D)) has a least
element (�) and a greatest element (D �D).

Also notice that congruence preorders are closed under arbitrary intersection. It
follows that the poset of congruence preorders has all joins. In particular it has
�nite joins. We prove that it is a distributive lattice:

Lemma 1.3.2 ConP (D) is a distributive lattice.

Proof: First note that it is suÆcient to prove that for any -2 ConP (D) the order
preserving map

- \( ) : ConP (D) �! ConP (D)

has a right adjoint. For then - \( ) preserves arbitrary joins and so it certainly
preserves �nite joins. i.e. ConP (D) is distributive.

The right adjoint is given by

-0 7�!- = -0

where

- = -0� f(z; �z)j(z ^ y) - (�z _ �y) whenever y -0 �yg. 2

We construct the free Boolean algebra on a distributive lattice as a particular sub-
lattice of ConP (D).
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For all a 2 D de�ne a pair of congruence preorders -[a;0];-[1;b] by

x -[a;0] y , x � y _ a

x -[1;b] y , x ^ b � y

Notice that

-[a;0] \ -[1;a]=�= 0ConP (D)

and -[a;0] _ -[1;a]= D �D = 1ConP (D)

To see the latter note that

a -[a;0] 0 and 1 -[1;a] a

and so (a; 0); (1; a) 2-[a;0] _ -[1;a]. But then (1; 0) 2-[a;0] _ -[1;a] by transitivity
of congruence preorders.

Thus -[a;0] and -[1;b] are complemented elements of ConP (D) for every a; b. It
is easy to check, in any distributive lattice, that �nite joins and �nite meets of
complemented elements are complemented. De�ne

-[a;b]�-[a;0] _ -[1;b]

So the set

B � f^i2I -[ai;bi] j(ai; bi)i2I a �nite collection of elements of Dg

is a Boolean algebra. Any element of B can be expressed as

^i2I (-[ai;0] _: -[bi;0])

for some �nite collection (ai; bi)i2I , where : is the Boolean algebra negation.

There is a distributive lattice inclusion: i : D ,! B given by i(a) =-[a;0].

Say f : D ! �B is a distributive lattice homomorphism to some Boolean algebra �B.
If we have found two �nite sets of elements fai; biji 2 Ig; f�a�i;�b�ij�i 2 �Ig such that
^i(-[ai;0] _: -[bi;0]) = �̂i(-[�a�i;0]

_: -[�b�i;0]
), we would like to check,

Lemma 1.3.3 ^i(fai _ :fbi) = �̂i(f�a�i _ :f�b�i)

(For then it will be `safe' to de�ne � : B ! �B by �(-) = ^i(fai _ :fbi) for any
collection fai; biji 2 Ig such that -= ^i[-[ai;0] _: -[bi;0]].)
Proof: To conclude that ^I (fai _ :fbi) � ^�I (f�a�i _ :f

�b�i) we need to prove that
for every �i and for every pair J1; J2 � I with I � J1 [ J2 we have

(^i2J1fai) ^ (^i2J2:fbi) � (f�a�i _ :f
�b�i)

This relies on the �nite distributivity law of Lemma [1.2.6] being applied to the
meet ^i(fai _ :fbi). But the last inequality can be manipulated to

f((^i2J1ai ^
�b�i) _ _i2J2bi) � f((�a�i ^ �b�i) _ (_i2J2bi))

and so we want to check:

(^i2J1ai ^
�b�i) _ _i2J2bi � (�a�i ^ �b�i) _ (_i2J2bi) � (�)

But the assumption
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^i(-[ai;0] _: -[bi;0]) � �̂i(-[�a�i;0]
_: -[�b�i;0]

)

can via the same manipulations be shown to imply:

(^i2J1 -[ai;0] ^ -[�b�i;0]
) _ _i2J2 -[bi;0]� (-[�a�i;0]

^ -[�b�i;0]
) _ (_i2J2 -[bi;0]):

(�) follows since i is a distributive lattice inclusion. 2

We check that �, so de�ned, preserves �nite meets. For if
-1= ^i2I (-[ai;0] _: -[bi;0]) and -2= ^i2�I (-[ai;0] _: -[bi;0]) )

-1 ^ -2= ^I[�I(-[ai;0] _: -[bi;0]). So

�(-1 ^ -2) = ^I[�I(fai _ :fbi)

= [^i2I (fai _ :fbi)] ^ [^i2�I (fai _ :fbi)]

= �(-1) ^ �(-2)

Similarly for _s.
Hence � is the unique Boolean algebra homomorphism from B to �B that satis�es

the condition that � Æ i = f . i.e. B is the free Boolean algebra on the distributive
lattice D.

We have one �nal use for our congruence preorders which is to show how they
can be used to form the quotient of a distributive lattice by an ideal. An ideal I of
a distributive lattice D is a subset of D which satis�es:

(i) I is lower closed. i.e. # I = I;

(ii) 0 2 I

(iii) a; b 2 I implies a _ b 2 I

It follows immediately that for any ideal I the set

-I� f(x; y)j9i 2 I x � y _ ig

is a congruence preorder. We now quotient by the corresponding congruence, i.e.
we de�ne an equivalence relation �I on D by a �I b if and only if a -I b and
b -I a. Then the set of equivalence classes, D=�I , is a distributive lattice. The
equivalence class of an element a in D is denoted by [a]. So there is a distributive
lattice surjection [ ] : D ! D= �I . Given this construction we have

Lemma 1.3.4 (i) [a] = [0] if and only if a 2 I

(ii) For any second distributive lattice �D there is a bijection between the distributive

lattice homomorphisms f : D= �! �D and the distributive lattice homomorphisms
�f : D ! �D with the property that �f(a) = 0 8a 2 I. The bijection is given by

f 7�! f Æ [ ]

Proof: (i) Say a 2 I . Then a � 0 _ i for some i 2 I and 0 � a _ i for some i 2 I .
i.e. a -I 0 and 0 -I a and so a �I 0. i.e. [a] = [0] .

Conversely if [a] = [0] then a �I 0. So a -I 0. Hence a � 0 _ i for some i 2 I .
Therefore a 2 I as I is lower closed.

(ii) Say f : D= �I! �D is given. Then for all i 2 I (f Æ [ ])(i) = f([i]) = f([0]) =
0. Say �f : D ! �D has property �f(i) = 0 for every i 2 I . De�ne f : D= �I! �D by
f [a] = �f(a). This is well de�ned for if [a1] = [a2] then a1 -I a2 and so there exists
i 2 I such that a1 � a2 _ i.
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�f(a1) � �f(a2 _ i) = �f(a2) _ �f(i) = �f(a2) _ 0 = �f(a2)

Similarly �f(a2) � �f(a1). It is also easy to see that f so de�ned is a distributive
lattice homomorphism. Hence

f 7�! f Æ [ ]

is a surjection. Finally say

f1 Æ [ ] = f2 Æ [ ]

Then f1 = f2 since [ ] is a surjection (surjections are epimorphisms). Hence
f 7! f Æ [ ] is a bijection. 2

1.4 Directed subsets

Alongside the �nite subsets we have another important class of subsets, the directed
subsets. These are particular subsets of posets.

De�nition: A subset �A of a poset A is said to be directed if and only if (i) 9a 2 �A
(ii) 8b; c 2 �A 9d 2 �A such that b � d and c � d.

We use the up-arrow " in �A �" A to denote the fact that �A is a directed subset of
A. Notice that a lower closed subset of a distributive lattice is an ideal if and only
if it is a directed subset. We use the notation

W"
to denote the join of a set that is

directed. A complete lattice is a poset with all joins.

Lemma 1.4.1 Any join _ �A de�ned on a complete lattice A can be expressed as a

directed join of �nite joins of elements of �A.

Proof: The set @ �= f_BjB � �A; B 2 FAg is a directed subset of A. ClearlyW"
@ = _ �A. 2

A poset is called a dcpo (directed complete partial order) if and only if all
directed subsets have joins. A function between posets is a dcpo homomorphism
i� it preserves directed joins. We have de�ned the category dcpo. If x; y 2 A for
some dcpo A then we say that x is way below y and write x� y i� for all directed
S �" A if y �

W"
S then x � s for some s 2 S. An element x 2 A that is way

below itself (x � x) is said to be compact. The set of directed lower subsets of
a poset A is called the ideal completion of A and it is denoted Idl(A). Idl(A) is
always a dcpo and there is a poset inclusion #: A! Idl(A) which takes an element
of A to the set of elements lower than it in the order. IdlA is the free dcpo on
the poset A. The set of all dcpos of the form IdlA for some poset A is important.
They are called the algebraic dcpos. Given an algebraic dcpo an isomorphic copy
of the poset of which it is an ideal completion can be found as the poset of compact
elements. i.e. for every algebraic dcpo A if KA is the poset of compact elements
then A �= Idl(KA) (where �= of course denotes the existence of an order preserving
isomorphism between the two posets). Further if IdlK1

�= IdlK2 then K1
�= K2.

We use alg-dcpo to denote the full subcategory of dcpo whose objects are the
algebraic dcpos. Another characterization of the algebraic dcpos is the following: a
dcpo A is algebraic i� 8a 2 A

(i) fbjb� b; b � ag is directed

(ii)
W"
fbjb� b; b � ag = a
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A class larger than the class of algebraic dcpos is the class of continuous posets. A
dcpo A is a continuous poset (or sometimes `is continuous') if and only if

(i) fbjb� ag is directed for every a 2 A.

(ii)
W"
fbjb� ag = a 8a 2 A

Recall that if A;B are two objects of a category C then we say that A is a retract of

B if and only if there are two maps i : A! B, p : B ! A in C such that p Æ i = Id.
The following result is implicit in [Sco72]:

Lemma 1.4.2 (Scott) A dcpo A is a continuous poset if and only if there exists

an algebraic dcpo B such that A is a retract of B in dcpo.

Proof: Say A is a continuous poset. Then ## : A! IdlA given by

##(a) = fbjb� ag

is a dcpo map to an algebraic dcpo. But
W"

: IdlA ! A is also a dcpo map (it is

left adjoint to # and so preserves all joins) and
W"

Æ## = Id by the de�nition of a
continuous poset. Hence A is the retract of an algebraic dcpo.

Conversely say A is a retract of B, an algebraic dcpo. Certainly B is a continuous
poset. So there exists dcpo maps i : A ! B and p : B ! A with the property
p Æ i = Id. I claim that

a�A �a , 9�b 2 B a � p(�b) �b�B i(�a)

Say a �A �a then since i(�a) =
W"
f�bj�b �B i(�a)g, we can apply p to both sides and

�nd that

�a = pi(�a) = p(

"_
f�bj�b�B i(�a)g

=

"_
fp(�b)j�b�B i(�a)g

and so a � p(�b) for some �b�B i(�a).
Conversely say there exists �b 2 B such that a � p(�b) and �b �B i(�a), and say

�a �
W"

S for some S �" A. Then

i(�a) � i(

"_
S)

=

"_
fi(s)js 2 Sg

Hence �b � i(s) for some s 2 S. We �nd that a � s by applying p to both sides of
this last conclusion. So I have veri�ed my claim.
Notice that this claim in particular shows that if �a 2 A and b 2 B then b �B i(�a)
implies p(b)�A �a. And so for any �a 2 A

�a = pi(�a) = p(

"_
fbjb�B i(�a)g

=

"_
fp(b)jb�B i(�a)g

=
_
faja�A �ag
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Finally we need to check that the set faja�A �ag is directed for every �a 2 A. This
follows as an application of the claim from the fact that fbjb�B

�bg is directed for
every �b 2 B. 2

For technical use later we have

Lemma 1.4.3 In a continuous lattice A the way below relation � is interpolative.

i.e. if a� b then there exists c such that a� c� b.

Proof: De�ne S = fd 2 Aj(9c 2 A)(d� c� b)g. It follows that S is directed and

b �
W"

S 2

For more background on continuous posets consult 2.1 VII of [Joh82].

1.5 The Category Loc

A frame is a poset with all joins and �nite meets such that the arbitrary joins
distribute over �nite meets. i.e. for any subset S of the frame and for any element
a we have

W
S ^ a =

W
fs ^ ajs 2 Sg

An example of a frame is the set of opens of a topological space. Frame homo-
morphisms are required to preserve �nite meets and arbitrary joins. Given any
continuous function f : X ! Y for topological spaces X and Y it is clear that the
inverse image of f is a frame homomorphism from the opens of Y to the opens of
X . i.e.

f�1 : 
X ! 
Y

is a frame homomorphism where 
X is the frames of opens of X and 
Y is the
frame of opens of Y . We de�ne Loc, the category of locales, to be the opposite of
the category frames (=Frm). What has just been described is a functor from the

category of topological spaces (Sp) to the category of locales:


:Sp�!Loc

Having just given the impression that we shall talk about the locale 
X we
now confuse the reader by �xing a di�erent notation for locales which will seem
perverse to the newcomer: we shall talk about the locale X , but whenever we do
any manipulations on it we shall talk about the corresponding frame of opens 
X .
The reason for doing this is to make sure that the discussions of locales and the dis-
cussions of frames are kept separate. Clearly the distinction is only mathematically
important when we are dealing with the morphisms, but having a di�erent notation
for the objects will make it clearer which category we are working in. It will be
tremendously helpful to talk about pullbacks and products of locales since these
can be visualised as topological pullbacks and products and so having a distinct

notation will help reinforce the spatial intuitions that are behind the localic results.
Of course all this will seem like an irritating syntactic distraction for the newcomer.

If f : X ! Y is a locale map between locales X and Y then we write 
f for
the corresponding frame homomorphism from 
Y to 
X . Notice that since 
f
preserves arbitrary joins it has a right adjoint. This right adjoint is denoted 8f and
is given by the formula:

8f : 
X �! 
Y

a 7�!

"_
fbj
f(b) � ag
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If 
f has a left adjoint it is denoted by 9f .
The subobject classi�er is a frame. If we assume the excluded middle it is

the frame of two elements: true and false. In an arbitrary topos it is well known
that the subobject classi�er is the power set of the terminal object (i.e. P1 where
1 = f�g) and clearly any power set is a frame with the order given by ordinary
subset inclusion. In fact

Lemma 1.5.1 
, the subobject classi�er, is initial in the category of frames.

Before proof let us make a seemingly innocuous observation: if T 2 P1 then

T =
S
ff�gj� 2 Tg.

(Certainly [ff�gj� 2 Tg � T . Conversely for any x 2 T we have x = �. Hence
� 2 T and so x 2 [ff�gj� 2 Tg.) Expressed as a fact about the frame of opens of
the locale it reads 8i 2 


i =
W
f1j1 � ig

This will be used a lot when reasoning about 
. It corresponds to the idea of
concluding that two propositions are equal whenever they logically imply each other.
Proof that 
 is initial: Say X is a locale. De�ne ! : X ! 1 by


! : 
 �! 
X

T 7�!

_
f1
X j� 2 Tg

(Recall 
 = Pf�g.) Clearly 
! preserves �nite meets and arbitrary joins. Say

f : Pf�g �! 
X is some frame homomorphism. Then 8T � f�g,


f(T ) = 
f
[
ff�gj� 2 Tg

=
_
f
ff�gj� 2 Tg

=
_
f
f1
j� 2 Tg

=
_
f1
X j� 2 Tg = 
!(T ) 2

We use 1 to denote the locale corresponding to the frame 
.

Given a locale X we can construct a topological space ptX (`point' X). The under-
lying set of ptX is given by

fpjp : 1! X p a locale map g

These ps are called the points of the locale X . (Not to be confused with the elements
a 2 
X ; they are the opens of the locale X .) The points of X correspond to frame
homomorphisms from 
X to 
.

Notice that if p1 : 1 ! X , p2 : 1 ! X are two points of some locale X then
since i =

W
f1j1 � ig for any i 2 
 we have that for any a 2 
X


p1(a) =
W
f1j1 � 
p1(a)g

It follows that if we know that for all a 2 
X 
p1(a) = 1 , 
p2(a) = 1 then
p1 = p2. It follows that a point is uniquely determined by the true kernel of its
corresponding frame homomorphism.

The topology on this set of points is given by all sets of the form:

fpj
p(a) = 1g
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where a ranges over all elements of the frame 
X and where 1 is the top element
of the subobject classi�er 
. That this set forms a topology follows easily enough
from the fact that 
p is a frame homomorphism for any point p.

If f : X ! Y is a locale map then composition of arrows in Loc clearly de�nes a
function from the underlying set of ptX to the underlying set of ptY ; it is easy to
see that this function is continuous and so we can view pt as a functor:

pt:Loc�!Sp

Theorem 1.5.1 pt is right adjoint to 
.

Proof: De�ne a natural transformation � : Id
:
! pt
 by

�X : X �! pt
X

x 7�! fx

Where fx(U) =
S
ff�gjx 2 Ug. So fx(U) = 1 , x 2 U , and from now on we

will de�ne points by simply giving the true kernel of the corresponding frame ho-
momorphism. The reader can check that (i) fx is a frame homomorphism for every
x, (ii) �X is continuous for every space X and (iii) � is a natural transformation.
To de�ne a natural transformation � : 
pt

:
! Id we need to de�ne a map

�Y : 
ptY �! Y

in Loc for every locale Y . We de�ne a class of frame homomorphisms by


�Y : 
Y �! 
ptY

a 7�! fpj
p(a) = 1g

Warning: notation does clash here. When the functor 
 is applied to the space X
we get a locale 
X . However the frame of opens of this locale is denoted by 
X
rather than 

X .
The reader can check that 
�Y is a frame homomorphism for every Y and that �,
so de�ned, is a natural transformation.
So to verify that 
 a pt we just need to check the triangular equalities for � and �.
We �rst examine


X

�X- 
pt
X

@
@
@
@
@

id
R


X

�
X

?

This amounts to checking that

��1
�
X(U) = U 8U 2 
X

i.e. that ��1fpj
p(U) = 1g = U . But

x 2 ��1fpj
p(U) = 1g , fx 2 fpj
p(U) = 1g

, fx(U) = 1 , x 2 U
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The other triangular equality is

ptY
�ptY- pt
ptY

@
@
@
@
@

id
R
ptY

pt�Y

?

Say �p 2 ptY . So �p : 1! Y is a locale map. Then �ptY (�p) is a locale map from 1 to

ptY . It is given by the function p�p : 
ptY ! 
 where

p�p(U) = 1 , �p 2 U

pt�Y takes p�p to the composition


Y

�Y
�! 
ptY

p�p
�! 


But 8a 2 
Y

p�p
�Y (a) = 1 , p�pfpj
p(a) = 1g = 1

, �p 2 fpj
p(a) = 1g

, 
�p(a) = 1

Thus pt�Y Æ �ptY (�p) = �p. 2

A short note is appropriate at this point to the e�ect that `category theory is
constructive'; to conclude that the triangular equalities are enough to imply an ad-
junction we are of course assuming the well known categorical proof which veri�es
this fact. This categorical proof (see [Mac71] p81 theorem 2(v)) is easily seen to
be constructive (it does not rely on the excluded middle) and so our overall proof
that 
 a pt is constructive. At a couple of other points in the thesis we will say
`by a well known categorical result...', and in all cases the proof being referred to is
constructive.

We say that a locale X is spatial if and only if 
ptX is isomorphic (via the
unit of the adjunction) to X and that a space Y is sober if and only if pt
Y is
isomorphic to Y via the counit. Crucially: `most' spaces are sober and so we
can view the category of locales as a sensible (almost) generalisation of topological
spaces. Further, in practice, most locales are spatial and so the category of locales
is (in practice) not a massive generalization of the category of spaces.

Theorem 1.5.2 The retracts of spatial locales are spatial.

Proof: This is really just a piece of category theory. Say Y is spatial; i.e. �Y is
an isomorphism in the category Loc. Let X be a retract of Y ; say there exists
i : X ,! Y and p : Y ! X with the property that p Æ i = 1. I claim that

��1X = 
pt(p) Æ ��1Y Æ i

For

�X Æ
pt(p) Æ �
�1
Y Æ i = p Æ �Y Æ �

�1
Y Æ i

= p Æ i = 1;


pt(p) Æ ��1Y Æ i Æ �X = 
pt(p) Æ ��1Y Æ �Y Æ
pt(i)

= 
pt(p) Æ
pt(i)

= 
pt(p Æ i) = 
pt(1) = 1 2
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1.6 Some Constructively Spatial Locales

We now look at an example of the 
 a pt adjunction being applied to certain
subclasses of locales and spaces. It will be useful to recall that for any topological
space X we can de�ne a specialization order between the points of the space:
x1 v x2 if and only if

8U 2 
X x1 2 U ) x2 2 U

Notice that a simple argument proves that any continuous function between spaces
preserves the specialization order.
Given an algebraic dcpo X we say that U � X is Scott open i� " U = U (i.e. 8x 2 U
if y � x then y 2 U ; U is upper closed) and for every directed subset S �" X ifW"

S 2 U then 9s 2 S such that s 2 U . The set of Scott open subsets of a dcpo X
is denoted �X . It is a frame with the order given by subset inclusion.

Theorem 1.6.1 If X is an algebraic dcpo then �X is isomorphic as a poset to

A(KX) where KX is the poset of compact elements of X and A(KX) is the set of

all upper closed subsets of KX .

Proof: Clearly the maps

� : �X �! A(KX)

U 7�! fk 2 KX jk 2 Ug

 : A(KX) �! �X

V 7�!

[

k2V

" k

preserve order. Trivially � (V ) = V for all V � KX with " V = V .

We show  �(U) = U for every Scott open U . Now

 �(U) � U

since U is upper. In the other direction recall that for every x 2 U

x =
W"
fkjk 2 KX k � xg

since X is algebraic. But U is Scott open and so there exists k � x such that
k 2 KX \ U . i.e. k 2  (U). Hence

x 2
S
k2 (U) " k =  �(U) 2

We call a topological space (X;
X) Scott if and only if X has a partial order
on it which makes it into an algebraic dcpo and 
X = �X . Let ScottSp be the
full subcategory of Sp whose objects are all the Scott spaces.

Lemma 1.6.1 If X is a Scott space then the order of the dcpo is the specialization

order.

Proof: Say x1 � x2 in the dcpo order and x1 2 U for some Scott open U . Then
x2 2 U since Scott opens are upper closed. Hence x1 v x2 in the specialization
order.
Conversely say x1 v x2 in the specialization order. Then if k � x1 for some compact
k we see that x1 2" k. But " k is a Scott open since k is compact, and we �nd that
x2 2" k by the de�nition of specialization order. i.e. k � x2 for every compact k
less than x1. But x1 is the join of all compact elements less than it, and so x1 � x2
in the dcpo order. 2
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Lemma 1.6.2 alg-dcpo�=ScottSp

Proof: Clearly, by de�nition, both these categories essentially share the same ob-
jects. All that remains is to check that directed join preserving functions between
dcpos correspond to continuous function between Scott spaces.
Say f : X ! Y is a directed join preserving function between dcpos X and Y . Say
U � Y is Scott open. Certainly f�1U is upper (N.B. it is easy to check that if f

preserves directed joins then it preserves order, for if x � y then fx; yg is directed).

Now say S �" X and
W"

S 2 f�1U . Then f(
W"

S) 2 U )
W"
ffsjs 2 Sg 2 U

and so there exists an s in S such that fs 2 U . Hence there exists an s in f�1U
and we see that f�1U is Scott open. So f : X ! Y is a continuous function.
Conversely say f : X �! Y is a continuous function between Scott spaces. So we
know that it preserves the specialization order by an earlier remark, and since we
have a lemma to the e�ect that the specialization order and the dcpo order coincide
in this case we know that f preserves the dcpo order. Hence if S �" X is a directed
subset of X we have that

(i) ffsjs 2 Sg is a directed subset of Y

(ii)
W"
ffsjs 2 Sg � f(

W"
S).

Say k � f(
W"

S) (k compact). Then " k is open in Y as it is Scott open. Thus

f�1(" k) 2 
X . But
W"

S 2 f�1(" k) and so 9s 2 S such that s 2 f�1(" k) )

k � fs �
W"
ffsjs 2 Sg. Hence f(

W"
S) �

W"
ffsjs 2 Sg since every element of Y

is the join of compact elements less than it. 2

Thus ScottSp is just the full subcategory of dcpos given by the algebraic dcpos.
But what are the locales that are going to correspond to the Scott spaces? They
are the Alexandrov locales. A locale X is said to be Alexandrov if and only if

X = A(K) for some poset K. Let AlexLoc be the full subcategory of Loc
consisting of those locales which are Alexandrov.

Theorem 1.6.2 pt;
 de�ne an equivalence ScottSp �= AlexLoc.

Some work has been done already in the proof of Lemma [1.6.1]. This allowed us to
conclude �Idl(K) �= A(K) for any poset K. All we need to do is prove that Scott
spaces are sober and Alexandrov locales are spatial.

Scott spaces are sober. We need to check that �X : X ! pt
X (x 7! px) is
a homeomorphism between topological spaces for any Scott space X . Recall that

px(U) = 1 , x 2 U .
Say 
p : 
X ! 
 is the frame homomorphism corresponding to some point p of
X . We know 
X �= A(KX) where KX is the set of compact elements of X . De�ne
Ip � KX by

Ip � fkj
p(" k) = 1g

Now certainly 
p(KX) = 1. But KX =
S
f" kjk 2 KXg. And so the following are

equivalent,

f�g = 1
 =
[
f
p(" k)jk 2 KXg

� 2 
p(" k) for some k 2 KX

1 = 
p(" k) for some k 2 KX

k 2 Ip for some k 2 KX

:
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i.e. Ip is nonempty.
Say k1; k2 2 Ip ) 
p(" k1) = 1;
p(" k2) = 1. Then 1 � 
p(" k1) \ 
p(" k2).
i.e. 1 � 
p(" k1\ " k2). But

" k1\ " k2 =
S
f" kjk1; k2 � k; k 2 KXg

and so by a similar argument (i.e. using the facts that 1
 = f�g and join is given
by union in 
) we get that 
p(" k) = 1 for some k 2 KX with k1; k2 � k. i.e.
k 2 Ip and Ip is seen to be directed. i.e. Ip 2 IdlKX

�= X .
Thus f : p 7! Ip is a function from the space pt
X to the space X . Is it continuous?
Say U � X is an open subset of X . Then for any p 2 f�1U we have Ip 2 U . But

Ip =
W"
fkjk 2 Ipg

and U is Scott open, so there exists k in Ip such that k 2 U . Therefore
1 = 
p(" k) � 
p(U). Hence 
p(U) = 1.
Conversely say 
p(U) = 1.

U =
S
f" kjk 2 Ug

Hence (again using the fact that 1
 = f�g) there exists k 2 U with 
p(" k) = 1.
So k 2 Ip and hence Ip 2 U since U is upper closed. This last implies p 2 f�1U . It
follows that

p 2 f�1U , 
p(U) = 1

i.e. f�1U = fpj
p(U) = 1g, and so f�1 is open implying that f is continuous.
Notice we have also veri�ed that Ip 2 U ,� 
p(U) = 1.
We check that f Æ �X (x) = x 8x 2 X and �X Æ f(p) = p 8p 2 pt
X and so
conclude that any Scott space is sober.

f Æ �X (x) = f(px) = Ipx

= fkj
px(" k) = 1g

= fkjx 2" kg

= fkjk � xg

But the ideal of the last line corresponds to x under the isomorphism IdlKX
�= X .

(�X Æ f(p))(U) = 1 , pIp(U) = 1

, Ip 2 U

, 
p(U) = 1

The last equivalence is by the observation (�) above. Hence �X Æ f = Id and
f Æ �X = Id.

Alexandrov locales are spatial: The frame homomorphism corresponding to
�Y : 
ptY ! Y is given by 
�Y (a) = fpj
p(a) = 1g. Clearly 
�Y is a surjec-
tive frame homomorphism. We would like to prove that it is injective whenever

Y = A(K) for some poset K.
Say we have a; b 2 
Y with the property that 8p : 1 ! Y (i.e. for all points p of
Y ) we have 
p(a) = 1 , 
p(b) = 1. Does this imply a = b?
Well a = T for some T � K " T = T and b = S for some S � K " S = S since

Y = A(K) for some poset K.
Say k 2 K. De�ne 
pk : 
Y ! 
 by 
pk( �T ) = 1 , k 2 �T for all �T in 
Y .
Now say k 2 T . Then 
pk(T ) = 1. Thus 
pk(S) = 1. Thus k 2 S. Hence T � S.
Symmetrically we get S � T . So S = T and 
�Y is injective. Alexandrov locales
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are spatial. 2

To a certain extent this example is forced. There is no real reason to investi-
gate the Scott spaces, other than that by looking at them it is clear that we can
use the pt;
 adjunction in order to prove the result of interest, namely that the
algebraic dcpos as a full subcategory of all dcpos is equivalent to the Alexandrov
locales. (And even this is not the most straightforward way of looking at the re-
sult: we can't justify looking at locales unless we are trying to model a particular
class of spaces and we have just said that we are not really looking spaces, we are
looking at dcpos. The result, most simply stated, is a statement to the e�ect that
the category whose objects are A(K) for posets K and whose morphisms are frame
homomorphisms between them is dual to the full subcategory of dcpos consisting
of the algebraic dcpos.) However there are reasons to examine this particular ex-
ample of the pt;
 adjunction in action over others: it is constructive. Thus, in our
current constructive framework, we are permitted to make statements like `...if X
is an Alexandrov locale and x 2 X then...' since we know that we constructively
have points.

However most proofs that particular classes of locales are spatial (and hence can
be thought of as spaces) are classical: they require some choice axioms. We will see
these proofs in the �nal section of this chapter.

A special case of the Alexandrov locales is important: the discrete locales. These
are de�ned as those locales whose frame of opens are the upper completions (A)
of discrete posets. A poset is discrete i� x � y implies x = y. We use DisLoc to
denote the full subcategory of Loc consisting of the discrete locales. All discrete
locales are spatial since the Alexandrov locales are spatial.
Clearly the discrete locales are exactly those localesX such that 
X = PA for some
set A, and spatially we are thinking of the discrete spaces. A restriction of the equiv-
alence alg-dcpo�=AlexLoc to the discrete locales shows us that Set �= DisLoc

where Set is the underlying topos. To see this last conclusion note thatK �= Idl(K)
if K is a discrete poset.

We now turn to the retracts of the Alexandrov locales. These are spatial by
Theorem [1.5.2], and we might hope that they correspond to the continuous posets
given that we know that the continuous posets are the retracts of the algebraic dcpos
and the algebraic dcpos correspond to the Alexandrov locales. Indeed this fact can
be veri�ed (we point the reader to [Vic93] for a formal proof however). The rest of
this section contains a discussion of another characterization of the class of localic
retracts of the Alexandrov locales. They are the completely distributive locales. i.e.
those locales whose frame of opens is a completely distributive lattice. The usual
de�nition of a completely distributive lattice is roughly `arbitrary joins distribute
over arbitrary meets'. Technically this amounts to the statement: if fJiji 2 Ig is
an indexed family of sets then

V
f
W
Jiji 2 Ig =

W
f^ff(i)ji 2 Igjf 2 Fg

where F = ff : I !
`
i2I Jijf(i) 2 Ji 8ig.

However showing results about completely distributive lattices with this de�-
nition can often require the axiom of choice: e.g. showing that the opposite of
a completely distributive lattice is completely distributive requires the axiom of
choice (e.g. lemma VII (1.10) of [Joh82]). Fawcett, Roseburgh and Wood address
the problem of trying to �nd a constructive version of the complete distributivity
axiom. They say that a complete lattice A is constructively completely distributive
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if and only if the join map
W
: D(A) ! A (where D denotes the action of taking all

lower closed subsets) has a left adjoint. We see ([FW90],[RW91]) that the notions of
constructive complete distributivity and ordinary complete distributivity coincide
if and only if we assume the axiom of choice.

It might appear that a de�nition in terms of the existence of an adjoint is out of
step with some of our other de�nitions; however note that a dcpo A is continuous
if and only if

W"
: IdlA! A has a left adjoint.

As an aside it is worth mentioning that the opposite of a constructively com-
pletely distributive lattice can be proven to be constructively completely distributive
if and only if we assume the excluded middle. Thus we can translate the excluded
middle into a statement about constructively completely distributive lattices. See
[RW91].

We say that a locale X is CCD (constructively completely distributive) if and
only if 
X is a constructively completely distributive lattice. Let CCDLoc denote
the full subcategory of Loc whose objects are CCD.

Theorem 1.6.3 A locale X is CCD if and only if it is the retract of some Alexan-

drov locale.

Proof: Consult [Vic93]. 2

1.7 Locale Theory

The preceding discussion about the 
 a pt adjunction is just a piece of history. It
serves to convince the doubtful reader that the category of locales is a plausible
environment in which to do topological space theory. From now on we shall take
this motivation for granted, forget that spaces ever existed and develop locale theory
as if it was topological space theory. Occasionally the topological intuitions behind
what we do are explicitly referred to but mostly this is done implicitly through
the choices we make of topological adjectives used to describe localic concepts. For
more motivation consult [Joh82], [Isb72] and [Joh91].

1.7.1 Sublocales

If X0 � X is a subspace inclusion, then its inverse image (going to the subspace
topology) is a surjection. We take this as our de�nition of a sublocale: a locale map
X0 ! X is a sublocale if and only if the corresponding frame homomorphism is a
surjection. The sublocales form a poset which is denoted by Sub(X).
There are two important classes of sublocales: the closed sublocales and the open
sublocales. The spatial intuition behind these classes of sublocales is the idea of
closed and open subspaces.
Given a locale X and an element a of 
X we can de�ne two surjections away from

X .
Open:


X �! # a

b 7�! a ^ b
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and closed:


X �! " a

b �! a _ b

Within the category of locales we use the expressions

a� X

:a� X

to refer to the locale maps corresponding to these two frame surjections. Spatially
when we write :a ,! X we are thinking of the closed subspace corresponding to

the set theoretic complement of the open a.

Notice that we can take the closure of any sublocale. The closure of X0 ,! X is

:8i(0) ,! X

Lemma 1.7.1 For any sublocale i : X0 ,! X and closed sublocale :a ,! X

X0 �Sub(X) :a , :8i(0) �Sub(X) :a

Proof: First note that X0 �Sub(X) :8i(0), for we can de�ne a frame homomor-
phism,


n :" 8i(0) ! 
X0

8i(0) _ a 7! 
i(a):

(This is well de�ned since 
i8i(0) = 0 .) Also note that the diagram

Xo

n - :8i(0)
R
@
@
@
@
@

i

R 	�
�
�
�
�
	

X

commutes in Loc proving X0 �Sub(X) :8i(0).

Further note :8i(0) � :a if and only if a � 8i(0). (Essentially because


na :" a �! 8i(0)

a _ b 7�! 8i(0) _ b

is a well de�ned frame homomorphism if and only if a � 8i(0).)
But a � 8i(0) if and only if


p :" a �! 
X0

a _ b 7�! 
i(a)

is a well de�ned frame homomorphism and so

X0 � :a , :8i(0) � :a

as required. 2
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1.7.2 Denseness

A locale map f : X ! Y is dense if and only if 8a 2 
Y (
f(a) = 0 ) a = 0). It
is clear from the formula for the right adjoint to 
f that density of f is just the
assertion that 8f (0) = 0.
If f : X0� X is some sublocale of X then it is a dense sublocale of its closure.

If a; b 2 
X for some locale X then a! b 2 
X is given by the formula

a! b =
W"
fcja ^ c � bg

! is the well known Heyting arrow (see I 1.10 of [Joh82]); it enjoys the property
that for any a; b; c 2 
X

a ^ b � c , a � b! c

We introduce it here since it is needed in the following example of a dense sublocale:
given any locale X de�ne a new locale X:: by 
(X::) = fa 2 
X j::a = ag where
: is the Heyting negation, i.e. :a = a! 0. Notice that the map


X �! 
X::

a 7�! ::a

is a surjective frame homomorphism and so we have a sublocale X:: ,! X . The
fact that (::a = 0 ) a = 0) means that this inclusion is dense. Indeed it is the
least dense sublocale of X . It is not the case that all topological spaces have least
dense subspaces.

1.7.3 Separation axioms

A locale X is said to be compact if whenever we have a directed subset S of 
X
such that the join of S is the top element of X then the top element of X is in S.
Clearly this is the localic analogy to the spatial idea of compactness.
Given two elements a; b of a frame 
X we say a� b (a well inside b) if and only if
9 c 2 
X such that

a ^ c = 0

b _ c = 1

Lemma 1.7.2 a� b , :a _ b = 1 where :a is the Heyting negation of a. i.e.

:a =
W"
f�aj�a ^ a = 0g.

Proof If a� b then there exists c with a^ c = 0 and b_ c =. But a^ c = 0 implies
that c � :a since :a =

W"
f�cj�c ^ a = 0g. Hence :a _ b = 1.

If :a _ b = 1 then certainly a� b since a ^ :a is always equal to 0. 2

We say that a locale X is regular if and only if 8a 2 
X

a =
W"
fbjb� ag

Recall that a topological space X is regular if and only if for every closed F and
every x 62 F there are disjoint opens U; V such the F � U and x 2 V . This condition
implies and is implied by the condition: for every open W

W =
S"
fV jV �Wg
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i.e. a topological space is regular if and only if the locale whose frame of opens are
the opens of the space is regular.

Theorem 1.7.1 (a): A sublocale of a regular locale is regular.

(b): A closed sublocale of a compact locale is compact.

(c): A compact sublocale of a regular locale is closed.

Proof: (a) Say i : X0 ,! X is a sublocale such that X is regular. Clearly
a� b ) 
i(a)�
i(b). If a 2 
X0 then a = 
i(a0) for some a0 in 
X . But

a0 =
W"
fbjb� a0g

Hence

a = 
i(a0) =

"_
f
i(b)jb� a0g

�

"_
fcjc� 
i(a0)g

� 
(a0) = a

(b) Say :a ,! x is a closed sublocale of X and X compact. So 
(:a) =" a. Say

S �"" a and
W"

S = 1"a = 1
X . Then S �
" 
X and

W"
S = 1
X . Hence 9s 2 S

such that s = 1
X = 1"a i.e. " a is the frame of opens of a compact locale. i.e. :a
is compact.
(c) Say i : X0 ,! X is a sublocale such that X0 is compact and X is regular. We
know that i can be factored as

X0 ,! :8i(0) ,! X

where the �rst part of the composition is dense. By (a) we know that :8i(0) is
regular, and so we can conclude our result provided we show that if i : X0 ,! X is
also dense then it is an isomorphism.
First we check that 8a 2 
X if 
i(a) = 1 then a = 1. Certainly a =

W"
fbjb� ag

since X is regular. So

1 = 
i(a) =
W"
f
i(b)jb� ag

Hence 9b�a such that 
i(b) = 1 (as X0 is compact). Thus 9c b^c = 0 a_c = 1.
Thus 
i(c) = 
i(b)^
i(c) = 
i(b^c) = 0. But this implies 8i
i(c) = 0 as 8i(0) = 0
since i is assumed to be dense. And so c = 0 because c � 8i
i(c). We conclude
a = 1 as a = a _ 0 = a _ c = 1.
We want to prove that 
i is an injection for then we can conclude that i is a locale
isomorphism. Say 
i(b1) = 
i(b2). It is suÆcient to prove for all a 2 
X that

a� b1 , a� b2

in order to conclude b1 = b2 since X is regular.
But

a� b1 , :a _ b1 = 1

, 
i(:a _ b1) = 1

, 
i(:a) _ 
i(b1) = 1

, 
i(:a) _ 
i(b2) = 1

, 
i(:a _ b2) = 1

, :a _ b2 = 1

, a� b2 2
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We say a locale X is locally compact if and only if for every a 2 
X we have
that

a =
W
fbjb� ag

So a locale X is locally compact if and only if 
X is a continuous poset. Spatially
we are thinking of the locally compact spaces.
X is said to be stably locally compact if and only if (it is locally compact and) the
� relation satis�es

(i) 1� 1 i.e. X is compact

(ii) a� b1; a� b2 ) a� b1 ^ b2

where a; b1; b2 are arbitrary elements of 
X .
Banaschewski and Br�ummer ([BB88]) describe these locales as corresponding to the
most reasonable not necessarily Hausdor� compact spaces.

Theorem 1.7.2 Any compact regular locale is stably locally compact.

Proof: It is suÆcient to prove that for any compact regular X if a; b 2 X then

a� b , a� b

(For from the de�nition of � it is easy to see that 1� 1 and a� b1; b2 )

a� b1 ^ b2.) Say a� b and b �
W"

S. Then :a _ b � 1 and so

1 � :a _
W"

S =
W"
f:a _ sjs 2 Sg

Thus 1 � :a _ s for some s by compactness. Hence a � s for some s 2 S and we
conclude a� b.
Conversely say a � b. b =

W"
fb1jb1 � bg since X is regular. Therefore a � b1 for

some b1 � b. Hence a� b. 2
Another example of a stably locally compact locale is a coherent locale; spatially we
are thinking of the coherent (or spectral) spaces. A locale X is said to be coherent
i�

(i) 1� 1

(ii) 8k1; k2 2 
X if k1 � k1 and k2 � k2 then k1 ^ k2 � k1 ^ k2:

(iii) 8a 2 
X a =

"_
fkjk � k; k � ag

We use K
X to denote the subset of compact opens of a locale X . i.e. K
X �

fk 2 
X jk � kg. So (i) and (ii) are saying that compact opens are closed under
the formation of meets and (iii) is saying that every open is the join of compact
opens less than it.
From the above de�nition of a coherent locale it is immediate that coherent locales
are stably locally compact.
Just as algebraic dcpos can also be de�ned as those dcpos which are ideal comple-
tions of posets we �nd that

Theorem 1.7.3 A locale X is coherent if and only if 
X �= Idl(D) for some

distributive lattice D.

Proof: What is needed is a repetition of the proof that a dcpo is algebraic if and
only if it is the ideal completion of its compact elements. We only need to further
check that the compact elements form a distributive lattice. It is trivial to check
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that the least element is compact and that if a1; a2 are compact then so is a1 _ a2.
Further, closure of compact opens under �nite intersection is part of the de�nition
of X being coherent; so the compact elements form a subdistributive lattice of 
X .
2

Just as the continuous posets are the retracts of the algebraic dcpos, we �nd a
similar result applies to the stably locally compact locales:

Theorem 1.7.4 A locale X is stably locally compact if and only if it is the retract

in Loc of some coherent locale Y .

Proof: Say X is stably locally compact. Then 
X is a continuous poset. But
the fact that any such poset is the retract of its ideal completion is seen in the
proof [1.4.2] (which showed us that the continuous posets are exactly the retracts
of the algebraic dcpos). The dcpo maps that prove that this retract exists are

## : 
X ! Idl
X and
W"

: Idl
X ! 
X .

However
W"

is left adjoint to #: 
X ! Idl
X and so preserves joins. ## is left

adjoint to
W"

and so
W"

preserves meets. Hence
W"

is a frame homomorphism.
But ##, as a left adjoint, preserves all joins and the fact that it preserves �nite meets
follows from the conditions (i) and (ii) in the de�nition of stably locally compact
above. Hence 
X is the retract in Frm of the frame of opens of some coherent
locale. Hence X is the retract in Loc of some coherent locale.

In the other direction say X is the retract of some coherent locale Y . Then there
is a retract diagram


X - 
X

�
�
�
�
�


i
�


Y


p

?

\

in Frm. 
Y is an algebraic dcpo and so 
X is a continuous poset by [1.4.2]. We
only have to check the stability conditions (i),(ii) in order to verify that X is stably
locally compact.

But recall the claim of the proof of [1.4.2] which showed us:

a�
X �a if and only if 9�b 2 
Y a � 
i(�b) �b�
Y 
p(�a)

The stability conditions for X follow from the fact that they hold for Y . 2

Finally, just as the ideal completion of a poset is the free dcpo over that poset
we �nd that the ideal completion of a distributive lattice is the free frame over that
distributive lattice. The proof follows the same route: if f : D ! 
X is a dis-
tributive lattice homomorphism to some frame 
X then the frame homomorphism
corresponding to it is given by: 
p : IdlD ! 
X where 
p(I) =

W"
ff(k)jk 2 Ig.

In the other direction a frame homomorphism from IdlD to 
X is taken to its
restriction to compact opens.

A map f : X ! Y between stably locally compact locales is said to be semi-

proper if and only if 
f preserves the way below relation �. De�ne CohLoc, the
category of coherent locales, to have coherent locales as objects and semi-proper
maps as morphisms. Clearly the maps between coherent locales that we are looking
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at here are those which preserve the compact opens; they are de�ned in [Joh82] as
the coherent maps.

What is the class of locales which are both compact regular and coherent? These
are called the Stone locales. Before we o�er some alternative characterisations of
them we need to de�ne what it means for a locale to be zero-dimensional. A locale
X is zero-dimensional if and only if for every a in 
X we have that

a =
W"
f�aj9c �a ^ c = 0 �a _ c = 1 �a � ag

Of course we refer to elements �a 2 
X as complemented if and only if there exists
some c 2 
X such that �a ^ c = 0 and �a _ c = 1. Notice that an open �a is comple-
mented i� �a � �a. Further notice that the set of all complemented opens (denoted
(
X)c) forms a Boolean algebra. So the zero-dimensionality condition could equally
well have been written: every open is the join of complemented opens less than it.

Theorem 1.7.5 The following are equivalent for any locale X.

(i) X is Stone:

(ii) X is compact and zero-dimensional.

(iii) 
X is the ideal completion of some Boolean algebra:

Proof:

(i))(ii). 8a; b 2 
X we know a� b, a� b since 
X is compact regular. But X

is coherent so 8a 2 
X

a =
W"
f�aj�a� �a �a � ag

) a =
W"
f�aj�a� �a �a � ag

However `�a� �a' is just the same as saying `a is complemented'.
(ii))(iii). As X is compact we know that whenever �a is complemented (i.e. when-
ever �a � �a) we have that �a � �a. i.e. �a is compact. So in the presence of com-
pactness the zero-dimensionality condition implies that every open is the join of
compact elements lower than it. But in the other direction if �a � �a then because
�a =

W"
fa0ja0 � a0 a0 � �ag we have that �a � a0 � a0 � �a for some a0. Hence

a0 = �a and the complemented opens coincide with the compact opens. The comple-
mented opens are certainly closed under meet and so we know that X is coherent:
it is the ideal completion of its compact opens. i.e. it is the ideal completion of its
complemented opens. But these form a Boolean algebra.
(iii))(i). 8a 2 
X we know a =

W"
fkjk � k k � ag. We also know that the set

fkjk � kg is a Boolean algebra. So if k � k then there exists c such that k ^ c = 0
and k _ c = 1. It follows that if k is less than a then k ^ c = 0 and a _ c = 1. i.e.
k � a. Hence

a =
W"
fbjb� ag 8a 2 
X

i.e. 
X is regular. Certainly X is (compact and) coherent since Boolean algebras
are distributive lattices.

1.8 The Constructive Prime Ideal Theorem

The Prime Ideal Theorem (PIT) is the statement: for every distributive lattice D,
provided D is not trivial (i.e. provided D 6= f�g) then there exists an ideal I � D
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with the property that if a ^ b 2 I then either a 2 I or b 2 I and 1 62 I . i.e. I is a
prime ideal.
The prime ideal theorem is well known, classically, to be a weak form of the axiom
of choice (see e.g. Chapter 7 of [Joh87]). Assuming the excluded middle (so the
subobject classi�er is f0; 1g) if f : D ! 
 is a distributive lattice homomorphism
then the set fajf(a) = 0g is a prime ideal. Certainly it is an ideal. If f(a ^ b) = 0
and we �nd that both f(a) 6= 0 and f(b) 6= 0 then we can from these conclude
that f(a ^ b) 6= 0. But we are assuming the excluded middle so we can use this
contradiction to conclude that either f(a) = 0 or f(b) = 0. Thus fajf(a) = 0g is a
prime ideal for any distributive lattice homomorphism f : D ! 
. This argument
works in the other direction: any prime ideal I � D gives rise to a distributive
lattice homomorphism f : D ! 
 with the property that f(a) = 0 if and only if
a 2 I .
Hence, if we are in a Boolean topos and so can use the excluded middle, we can �nd
an equivalent form of the PIT: for every distributive latticeD providedD 6= f�g then
there exists a distributive lattice homomorphism f : D ! 
. However we are let
down by the conditionD 6= f�g which (although possible to de�ne in a general topos
via Heyting negation) is clearly undesirable in our constructive context. However
the above observations help us home in on the following statement which will make
sense in any topos:
Constructive Prime Ideal Theorem (CPIT): For every distributive lattice D
if a 2 D has the property that f(a) = 0 for every distributive lattice homomorphism
f : D ! 
 then a = 0.
(I'd like to thank Till Plewe for helping me towards this de�nition.)

Theorem 1.8.1 CPIT , PIT in a Boolean topos. i.e. if we are allowed the ex-

cluded middle then the prime ideal theorem and the constructive prime ideal theorem

are logically equivalent.

Proof: Assume CPIT and say we are given some distributive lattice D which is
not trivial. Then 1 6= 0 in D and so by CPIT there exists f : D ! 
. i.e. we have
veri�ed PIT.
Conversely say we are given a distributive lattice D and a 2 D has the property that
8f : D ! 
, f(a) = 0. Say a 6= 0. Then the distributive lattice # a is non-trivial
and so there exists a distributive lattice homomorphism ( �f say) from it to 
. Set
f = �f Æ c where c is the distributive lattice homomorphism from D to # a given by
c(b) = a ^ b. Clearly f(a) = �f(1#a) = 1 6= 0 contradicting our assumption about a.
Hence a = 0. 2

We now note that just as the prime ideal theorem is well known to be equiv-
alent to the statement `every non-trivial Boolean algebra has a prime ideal' there
is a similar constructively equivalent way of stating the constructive prime ideal
theorem:

Lemma 1.8.1 CPIT is equivalent to the statement: for every Boolean algebra B if

b 2 B is an element that satis�es f(b) = 0 for every Boolean lattice homomorphism

f : B ! 
 then b = 0.

Proof: Clearly CPIT implies this statement. Conversely assume the statement
holds for every Boolean algebra B. Say we are given a distributive lattice D and
some a 2 D with the property that f(a) = 0 for every f : D ! 
. Then let
i : D ,! B be the inclusion of D into the free Boolean algebra over it. It follows
that �f(ia) = 0 for every Boolean homomorphism �f from B to 
. Hence i(a) = 0
by the assumption of the statement. Hence a is zero as i is an injection. 2
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We can now forget about the excluded middle and Boolean toposes. They were
only introduced in order to verify that our choice for the constructive prime ideal
theorem was reasonable.

Theorem 1.8.2 In any topos if CPIT holds then all coherent locales are spatial.

Proof: Say X is a coherent locale. Notice that the frame homomorphism corre-
sponding to the counit of the adjunction is a surjection. It is given by


�X : 
X ! 
ptX

I 7! fpj
p(I) = 1g

We want to show that this surjection is an injection for every coherent X . Say

fpj
p(I) = 1g = fpj
p(J) = 1g

for some I; J 2 
X �= Idl(K
X). This implies that for every point p, 
p(I) and

p(J) are the same element of the subobject classi�er 
 (recall that i =

W
f1j1 � ig

for every i 2 
). It follows that 
p(I) � 
p(J) and in particular that if 
p(J) = 0
then 
p(I) = 0.
Recall that any distributive lattice can be quotiented by an ideal (Lemma [1.3.4]).
We quotient K
X by J . So [b] = 0 , b 2 J 8b 2 K
X and there is a one to
one correspondence between distributive lattice homomorphisms f : K
X ! 

which satisfy f(b) = 0 for all b 2 J and all distributive lattice homomorphisms
�f : K
X= �J! 
. It follows, from the fact that 
X �= Idl(K
X) is the free frame
over the distributive latticeK
X that there is a one to one correspondence between
points, p, of X satisfying 
p(J) = 0 and distributive lattice homomorphisms from
K
X= �J to 
.
Now to verify I � J it is suÆcient to check that 8a 2 I and 8 �f : K
X= �J! 


�f [a] = 0

for then by CPIT [a] = 0 i.e. a 2 J .
However �f [a] = 0 , 
p(# a) = 0 where p is the point corresponding to �f (which
must satisfy 
p(J) = 0). But 
p(# a) � 
p(I) � 
p(J) = 0. 2

Recall from Theorem [1.5.2] that the retracts of all spatial locales are spatial. It
follows immediately that provided CPIT holds (a) all stably locally compact locales
and (b) all compact regular locales are spatial. It is also worth saying that therefore

the Stone locales are spatial (if we assume CPIT) for we have

Theorem 1.8.3 In any topos if the Stone locales are spatial then the constructive

prime ideal theorem is true.

Proof: Say B is a Boolean algebra and b 2 B has the property that for every
Boolean map f : B ! 
, f(b) = 0. It follows that for every such f , f(:b) = 1.
There is a one to one correspondence between these functions f and points of the
Stone locale whose frame of opens is given IdlB since IdlB is the free frame over
the Boolean algebra B. It follows that for every point p of this locale 
p(# :b) = 1
Thus

fpj
p(# :b) = 1g = fpj
p(# 1) = 1g.

But we are assuming that the Stone locales are spatial and so this condition implies
that # :b =# 1. Hence :b = 1, hence b = 0 and so by Lemma [1.8.1] the construc-
tive prime ideal theorem is veri�ed.2



Chapter 2

Preframes and the

Generalized Coverage

Theorem

2.1 Introduction

This chapter is more lattice theoretic than localic. We give a description of pre-
frames (as introduced by Banaschewski [Ban88]), and show how they form a sym-
metric monoidal closed category. We prove this by adapting K�r�i�z's precongruences
to the context of preframes. We recall [JT84] that the category of SUP-lattices
is symmetric monoidal closed. Further analogies between SUP-lattices and pre-
frames become clear: frames can be viewed both as special types of monoids in
the symmetric monoidal category of preframes and as special types of monoids in
the symmetric monoidal category of SUP-lattices. The latter fact is shown in Joyal
and Tierney [JT84], the former in Johnstone and Vickers [JV91]. Moreover frame
coproduct (=locale product) can be viewed as either tensor within the category of
preframes or as tensor in the category of SUP-lattices. This is the localic version
of the motivating example which is described in the introduction to the thesis. The
usefulness of this result is seen immediately with a proof of the localic Tychono�
theorem.

Not only can we view locale products in these di�erent ways, the same applies to
all locale limits: in particular frame coequalizers (=locale equalizers) can be viewed
as particular SUP-lattice coequalizers and as particular preframe coequalizers. Both
these facts stem from a general categorical result about any symmetric monoidal
closed category. We call this result the generalized coverage theorem and note that
it has an `opposite'. The end of the chapter is about applications of the generalized
coverage theorem (and its opposite). In particular the name of the theorem is jus-
ti�ed: it covers both the preframe version and Johnstone's original (SUP-lattice)
version of the coverage theorem. With the help of its `opposite' we are able to
deduce the fact that preframes have coequalizers from the fact that SUP-lattices
have coequalizers.

43
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2.2 Preframes

Johnstone's coverage theorem [Joh82] gives us a concrete description of the frame
corresponding to a set of generators and frame relations. The fact that such a frame
exists can be veri�ed easily enough by constructing the free frame on the generators
and then quotienting by the least congruence containing the relations. However
the advantage of the coverage theorem is that it gives us a concrete description
of the frame being presented. Hence we have a concrete description of arbitrary
frame coproduct, and this can then be used to prove that the coproduct of compact
frames is compact. In other words the product of compact locales is compact (i.e.
localic Tychono� theorem). It was observed in Abramsky and Vickers' work on
quantales ([AV93]) that the real content of the coverage theorem is the fact that
the frame being presented is isomorphic to the free SUP-lattice on another set of
generators and relations. This ability to describe frames as particular quotients
of free SUP-lattices is useful in the context of quantales since there one is often
trying to �nd SUP-lattice homomorphisms away from a particular frame. In fact
the coverage theorem extends very naturally to become a statement about how to
present quantales as particular SUP-lattices.

The proof of the localic Tychono� theorem using Johnstone's original description
of the coproduct frame (see III 1.7 of [Joh82]) is far from straightforward. Many
attempts were made to simplify e.g.[Ban88], [JV91]. In [JV91] the authors develop
the theory of preframes, and check that given a set of generators and preframe
relations then the preframe being presented is well de�ned. It is then possible to
�nd a preframe version of the coverage theorem: it states that given a set of gen-
erators and frame relations then the frame being presented is isomorphic to the
preframe being presented by some other set of generators and relations. Just as
was done with the original coverage theorem this preframe version can be used to
give an explicit description of the coproduct of frames. Only now the coproduct is
presented as a preframe and since we know that a frame is compact if and only if a
particular preframe homomorphism exists with the frame as its domain, the proof
of the localic Tychono� theorem becomes much simpler. This is what motivates us
to look at preframes.

A preframe is a poset with directed joins and �nite meets such that the directed
joins distribute over the �nite meets. A preframe homomorphism preserves directed
joins and �nite meets. The name `preframe' was introduced by Banaschewski in
his paper \Another look at the localic Tychono� theorem" [Ban88], although these
objects had already been looked at by Gierz et al as meet continuous semilattices
[GHKLM80].
We aim to show that the category PreFrm of preframes is symmetric monoidal
closed. Instead of just constructing a tensor product in PreFrm we address the
more general question of whether preframe presentations present. i.e. if we are
given a set G of generators and a set R of preframe equations of elements of G is
the preframe

PreFrm< GjR >

well de�ned?
It is true that such a general presentation presents [JV91] though for our purposes

we only need to show that a smaller class of presentations present. We aim to check
that for any meet semilattice S,

PreFrm < S(qua meet semilattice)j _" X = _"Y (X;Y ) 2 R >
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is well de�ned; where R is a set of pairs (X;Y ) with X and Y directed subsets of
S.

A note on notation is appropriate: the expression `qua meet semilattice' is short-
hand for saying that the equations

a ^ b = a ^S b 8a; b 2 S

1 = 1S

must be added to the presentation. This is saying that what is true in the semi-
lattice must be inherited by the preframe being presented. The meaning of the
expressions `qua preframe', `qua frame' etc should now be clear.

It is an easy exercise in the de�nition of what it means for a presentation to
present to check that we can further assume that the X and Y s in R are lower
closed and that R satis�es the following meet stability condition:

(8a 2 S)[(X;Y ) 2 R ) (fx ^ ajx 2 Xg; fy ^ ajy 2 Y g) 2 R]

2.3 Precongruences

These were introduced by K�r�i�z [K�r�i�z86] in his study of the completion of a uniform
locale. Given a frame 
X a precongruence, R, on it is a subset

R � 
X �
X

such that whenever aRb we have that the set

fuj(a ^ u)R(b ^ u)g

is a join basis for 
X . i.e. 8c 2 
X c =
W
U where U � fuj(a ^ u)R(b ^ u)g. Of

course this does not imply that a precongruence satis�es any of the axioms of being
an equivalence relation.
We say that u 2 
X is R-coherent if and only if whenever aRb then

(a � u) , (b � u)

The set of R-coherent elements is clearly closed under all meets. Further we have
that if u is R-coherent and c 2 
X then c ! u is R-coherent. For if aRb then
9Q � fvj(v ^ a)R(v ^ b)g such that

W
Q = c. Then

a � c! u , a ^ c � u

, a ^ q � u 8q 2 Q

, b ^ q � u 8q 2 Q

, b ^ c � u

, b � c! u

It is a well known fact (see e.g. [6.2.8] of [Vic89]) that a subset A0 of a frame
(
X) is a surjective image (via the map a 7! ^fb 2 A0ja � bg) of that frame if
it is closed under all meets and is closed under the Heyting arrow in the manner
described above. i.e. (8u 2 A0)(8c 2 
X)(c ! u 2 A0). So if we de�ne 
X(R)
to be the set of R-coherent elements of 
X then we see that there is a frame
surjection �R : 
X ! 
X(R). �R(a) is given by ^fuja � u u R-coherent g and
so a � �R(a) 8a. Also, joins on 
X(R) are calculated as follows:
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W

X(R) T = �R(

W
T )

for all T � 
X(R)

The map �R is universal in the following sense:

Theorem 2.3.1 (K�r�i�z) Given a frame 
X with a precongruence R on it any frame

homomorphism 
f : 
X ! 
Y satisfying (aRb ) 
fa = 
fb) factors (uniquely)
through �R.

Proof: Clearly it is enough to prove that

8a 2 
X 
f�R(a) = 
f(a) (�)

Set s(a) =
W
fb 2 
X j
f(b) � 
f(a)g. Then if �aR�b we see that

�a � s(a)

, 
f(�a) � 
f(a)

, 
f(�b) � 
f(a)

, �b � s(a)

i.e. s(a) is R-coherent, and so �R(s(a)) = s(a). Hence the fact that a � s(a) implies
�R(a) � s(a). Clearly, by the fact that 
f preserves joins, we have


fs(a) � 
f(a).

And so 
f(�R(a)) � 
f(a) from which (�) follows as �R is inationary. 2

The idea of prenuclei was introduced by Banaschewski ([Ban88]) to help with
his proof of a localic version of Tychono�'s theorem. �0 : 
X ! 
X is a prenucleus
if
(1) it is monotone
(2) a � �0(a) 8a 2 
X
(3) �0(a) ^ b � �0(a ^ b) 8a; b 2 
X .
Condition (2) implies that the set of �0-�xed elements of 
X is closed under
arbitrary meets. Say �0(u) = u and c 2 
X , then �0(c ! u) � c ! u i�
c ^ �0(c ! u) � u. But c ^ �0(c ! u) � �0(c ^ (c ! u)) � �0(u) � u and so
the set of �0-�xed elements is the frame of opens of a sublocale by the same reason-
ing that allowed us to conclude that 
X(R) is the frame of opens of a sublocale.
Given a prenucleus �0 : 
X ! 
X de�ne R�0 � 
X �
X by

aR�0b , (8u 2 
X)[(�0u = u)) (a � u, b � u)]

Notice from this de�nition that �0(u)R�0u 8u.

Lemma 2.3.1 R�0 is a precongruence.

Proof: Assume aR�0b.
I claim that fvj(a^ v)R�0(b^ v)g is the whole of 
X and so certainly is a join basis
for 
X .

So I need to prove, given an arbitrary v 2 
X , that if u 2 
X satis�es �0(u) = u

then

(a ^ v) � u , (b ^ v) � u
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But (a ^ v � u , a � v ! u) and u �0-�xed ) (v ! u) �0-�xed (see
above).
So (a � v ! u , b � v ! u , b ^ v � u) as required. 2

Crucially we �nd that the set of R�0 -coherent elements is the same as the set of
�0-�xed elements. One way round of this implication is obvious from the de�nition
of R�0 : if u is �0-�xed then it is R�0-coherent. Conversely say u is R�0 -coherent.
We know that �0(u)R�0u, and so �0(u) � u , u � u. Hence �0(u) = u.
I am not sure of the extent to which precongruences and prenuclei are the same
thing. Certainly they are used in the same way: K�r�i�z's universal theorem above
having an identical form to Banaschewski's lemma 1 in [Ban88].
Given a precongruence R the mapping

u 7�! u _
W
fa ^ bj9c; cRa; c ^ b � ug

is a prenucleus, although (the trivial) proof of this fact doesn't require R to be a
precongruence: it could be any subset of 
X � 
X .
Also the precongruences R�0 that we get from prenuclei cannot cover all possible
congruences. We saw that �0(u)R�0u for every u 2 
X , but the de�nition of precon-
gruences allows for the empty precongruence. We leave these theoretical discussions
aside and use precongruences only in what follows.

For any meet semilattice A let �A be the set of lower closed subsets of A. It is
well known that �A is the free frame over the semilattice A.

Theorem 2.3.2 Given a preframe A the set

RA � f(X; # _
"X)jX a directed lower subset of Ag

is a precongruence on �A. Moreover �A(RA) is the free frame over the preframe A.

Remark: It is easy to see that the RA-coherent elements of �A are exactly the
Scott closed subsets of A. i.e. the classical complements of the Scott opens.
Proof: That RA is a precongruence is quite straight forward: it is well known that
the set of sets of the form # a is a join basis for �A and since

# a \X = fx ^ ajx 2 Xg

# a\ #

"_
X = #

"_
fx ^ ajx 2 Xg

for any lower closed directed X we have that

(# a \X)RA(# a\ #
W"

X)

for every a.

We now note that the composite A
#
�! �A

�R
A

�! �A(RA) is a preframe homomor-
phism. To see this say we are given X �" A which is lower closed and directed. We
need to prove that

�RA #
W"

X =
W"
�A(RA)

f�RA # xjx 2 Xg

But �RA is a frame homomorphism and so

"_

�A(RA)

f�RA # xjx 2 Xg = �RA

"[
f# xjx 2 Xg

= �RAX
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But we know that �RA #
W"

X = �RAX from K�r�i�z's universal theorem. Hence
�RAÆ # is a preframe homomorphism.
Now say we are given some preframe homomorphism f : A ! B where B is some
frame. Since f is a meet semilattice homomorphism we know that it will factor
(uniquely) through #. i.e. 9! �f : �A! B (a frame hom.) such that �fÆ #= f .
�f is given by �f(Y ) =

W
Bff(y)jy 2 Y g. All we need to do (to check that �A(RA)

is the free frame on A) is verify that �f satis�es the precondition of K�r�i�z's universal
theorem; for then �f will factor through �RA . i.e. we need that if URV then
�fU = �fV . But this amounts to showing for any (lower) directed X that

�fX = �f #
W"

X

i.e. that
W"
ffxjx 2 Xg = f

W"
X , which follows at once since f is a preframe

homomorphism. 2

We can also de�ne precongruences on preframes; and this will give rise to a
universal theorem identical to K�r�i�z's except that the word `frame' is replaced with
the word `preframe'. From this new universal theorem the fact that preframe pre-
sentations present will follow as an easy corollary. Proof of this new theorem relies
on applying K�r�i�z's universal theorem.
Given a preframe A a precongruence on A is a subset R � A�A such that if aRb
then fuj(a ^ u)R(b ^ u)g is a directed join basis for A. i.e. 8a 2 A there exists

U �" fuj(a ^ u)R(b ^ u)g such that a =
W"

U .
Say we are given a preframe A with a precongruence R on it. Then this precon-
gruence gives rise to a precongruence on the free frame on A in the following way:
�R � �A(RA) � �A(RA) is de�ned to be f(# a; # b)jaRbg. We must check that �R is
a precongruence. Say # a �R # b. Now 8U 2 �A(RA) we have U =

S
u2U # u and so

by applying �RA : �A ! �A(RA) we see that U =
W
�A(RA)

f# uju 2 Ug. Hence to

conclude that �R is a precongruence we must but check that # u is a �A(RA)-join of
elements V 2 �A(RA) such that (# a \ V ) �R(# b \ V ) for any u 2 A.
Since u 2 A and aRb we know (by de�nition of precongruence on a preframe)

that u =
W"

Q for some Q such that (a ^ q)R(b ^ q) 8q 2 Q. We know that
#: A �! �A(RA) is a preframe homomorphism and so

# u =
W"
�A(RA)

f# qjq 2 Qg

But (a^q)R(b^q) implies # (a^q) �R # (b^q) and so (# a)^(# q) �R(# b)^(# q). Thus
# a is a join of elements V 2 �A(RA) such that (# a \ V ) �R(# b \ V ) as required.
Hence �R is a precongruence on �A(RA). This construction (of �R from R ) will be

used in

Theorem 2.3.3 If R is a precongruence on a preframe A then there exists an arrow

c : A! C in the category of preframes which is universal amongst arrows with the

property aRb ) c(a) = c(b).

Proof: We know (see above) that �R � f(# a; # b)jaRbg is a precongruence on the
free frame on A, �A(RA) and so there is a frame homomorphism

� �R : �A(RA) �! �A(RA)( �R)

The map #: A �! �A(RA) is a preframe injection. De�ne C to be the least
subpreframe of �A(RA)( �R) generated by the image of f# aja 2 Ag under � �R. Clearly
the map c : A! C de�ned by a 7! � �R # a is a preframe homomorphism. In fact it
is easy to see that c is a preframe epimorphism. Also note that if aRb then # a �R # b

and so � �R(# a) = � �R(# b) by K�r�i�z's universal theorem, and so c(a) = c(b).
Now say we are given f : A ! B, an arrow in PreFrm which satis�es aRb )
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fa = fb.
The inclusion #: B ! �B(RB) of B into its free frame is a preframe homomorphism
and so the composite # Æf must factor through the inclusion of A into its free frame.
i.e. there exists �f : �A(RA)! �B(RB) a frame homomorphism making

A �
#- �A(RA)

B

f

?
�

#- �B(RB)

�f

?

commute.
Say # a �R # b. Then aRb and so fa = fb. So certainly # fa =# fb i.e. �f # a = �f # b.
It follows from K�r�i�z's universal theorem that there exists �g : �A(RA)( �R)! �B(RB)
a frame homomorphism such that �g Æ � �R = �f . It follows at once that

�g Æ � �R # a =
�f # a =# fa

and so the set �g�1f# bjb 2 Bg is a subpreframe of �A(RA)( �R) which contains the
set f� �R # aja 2 Ag. Hence it contains C. It follows that �g restricts to a function
from C to f# bjb 2 Bg �= B. So there is a preframe g : C ! B with g Æ c = f as
required. The uniqueness of such a g is immediate from our remark earlier that c
is a preframe epimorphism. 2

Notation: By analogy to K�r�i�z's result we call the C above A(R) and we use �R to
denote the preframe map c : A! C.

2.4 Presentations

For a meet semilattice S recall that IdlS is the set of lower directed subsets of S.
It can be checked that IdlS is the free preframe on the meet semilattice S. We are
now in a position to prove:

Theorem 2.4.1 If S is a meet semilattice and R is a set of pairs (X;Y ) where X;Y
are directed lower closed subsets of S and R satis�es the following meet stability

condition:

(8a 2 S)[(X;Y ) 2 R ) (fx ^ ajx 2 Xg; fy ^ ajy 2 Y g) 2 R]

then

PreFrm< S (qua meet semilattice) j
W"

X =
W"

Y (X;Y ) 2 R >

is well de�ned.

Proof: The set f# sjs 2 Sg is a directed join basis for Idl(S) and so the conditions
on R given in the statement of the theorem imply that R is a precongruence on the
preframe Idl(S). We check that

Idl(S)(R) �=PreFrm< S (qua meet-semilattice) j
W"

X =
W"

Y (X;Y ) 2 R >

IdlS is the free preframe on S and so given any meet semilattice homomorphism
s : S ! B to some preframe B which satis�es

W"
Bfs(x)jx 2 Xg =

W"
Bfs(y)jy 2 Y g

for every (X;Y ) 2 R we know that s factors uniquely through #: S ! Idl(S). i.e.
there exists �s : Idl(S)! B such that �sÆ #= s. But XRY implies �s(X) = �s(Y ) and
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so �s factors through �R : Idl(S)! Idl(S)(R). 2

The rest of this section and Section 2.6 to follow spell out the consequences
of the fact that preframe presentations present and as such are repetitions of the
results of [JV91].

Now that Theorem [2.4.1] is proven we try out some examples. As with any
presentable algebraic theory we have a tensor product. Given A and B there is a
preframe A
B with a preframe bihomomorphism
O : A�B ! A
 B which is universal amongst all such bihomomorphisms. So set

S � ^ � SLat < aOb; a 2 A; b 2 Bj(aOb1) ^ (aOb2) = aO(b1 ^ b2) a 2 A; b1; b2 2 B

(a1Ob) ^ (a2Ob) = (a1 ^ a2)Ob a1; a2 2 A; b 2 B

1 = 1Ob 8b 2 B

1 = aO1 8a 2 A >

and de�ne the tensor by:

A
B � PreFrm < S qua meet-semilatticej

"_

i

(aiOb) =

"_

i

aiOb 8(ai) �
" A;8b 2 B

"_

i

(aObi) = aO

"_

i

bi 8a 2 A; (bi) �
" B >

ClearlyA
( ) is left adjoint to the function space functor [A! ] :PreFrm!PreFrm.
In fact

Theorem 2.4.2 PreFrm is a symmetric monoidal closed category.

Proof: The fact that presentations are well de�ned is the real `work' of this theorem.
We use this proof to check that the subobject classi�er (i.e. the power set of 1) is
the unit of the tensor. We de�ne two functions

p : A ! A



a 7! aO0

q : A

 ! A

by (aOi) 7!

"_
(fag [ f1Aj1 � ig)

Clearly p is a preframe homomorphism. Assume for the moment that (a; i) 7!W"
(fag [ f1Aj1 � ig) is a preframe bihomomorphism.

qp(a) = q(aO0)

=

"_
(fag [ f1Aj1 � 0g)

= a
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We also want that pq(aOi) = aOi.

pq(aOi) = p

"_
(fag [ f1Aj1 � ig)

= (

"_
(fag [ f1Aj1 � ig))O0

=

"_
(faO0g [ f1j1 � ig)

=

"_
(faO0g [ faO1j1 � ig)

= aO

"_
(f0g [ f1j1 � ig)

= aOi

To prove i �
W"

(f0g [ f1j1 � ig) recall from Chapter 1 that it is suÆcient to

check that i = 1 implies 1 =
W"

(f0g [ f1j1 � ig). We now check that (a; i) 7!W"
(fag [ f1Aj1 � ig) is a preframe bihomomorphism in order to be sure that q is

well de�ned. Fix i 2 
. Clearly
W"
f1g [ f1Aj1 � ig = 1. Say a; b 2 A.

"_
(fag [ f1Aj1 � ig) ^

"_
(fbg [ f1Aj1 � ig)

=

"_
(fa ^ bg [ fbj1 � ig [ faj1 � ig [ f1j1 � ig)

=

"_
(fa ^ bg [ f1j1 � ig)

So (( ); i) 7!
W"

(f g [ f1j1 � ig) preserves �nite meets.

Say T �" A then 8t 2 T certainly

t �
W"

(ftg [ f1j1 � ig)

hence
W"

T �
W"
t (
W"

(ftg [ f1j1 � ig)) and so an examination of cases tells us

W"
(f
W"

Tg [ f1j1 � ig) �
W"
t (
W"
ftg [ f1j1 � ig).

N.B. non-emptiness of T is needed. Hence (( ); i) 7!
W"

(f g [ f1j1 � ig) preserves
directed joins.
The fact that for any i; j 2 
; a 2 A we have

W"
(fag [ f1j1 � i ^ jg)

=
W"

(fag [ f1j1 � ig) ^
W"

(fag [ f1j1 � jg)

is easy enough to see: use distributivity of directed joins over �nite meets and note
that the sets fag and fag [ faj1 � ig [ faj1 � jg are the same. Finally for any

a the function i 7!
W"

(fag [ f1j1 � ig preserves directed joins. This follows from
compactness of 
. 2

We will need to construct some in�nite coproducts of preframes when we prove
the localic Tychono� theorem in Section 2.8. We have

Theorem 2.4.3 PreFrm is cocomplete.
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Proof: Again the `work' has been done with the presentation result. Say
D : J !PreFrm is a diagram of preframes. De�ne

S � ^ � SLat <
a

i2ObJ

D(i)j 1 = 1D(i) 8i

a ^ b = a ^D(i) b 8a; b 2 D(i) 8i

a = D(f)(a) 8a 2 D(i) 8f : i! j 2M(J) >

Then the preframe colimit is given by:

A � PreFrm < S qua meet semilattice j
W"

T =
W"
D(i)

T 8T �" D(i) 8i > 2

2.5 The Generalized Coverage Theorem

We have a symmetric monoidal category PreFrm. Over any symmetric monoidal
category C we can construct CMon(C), the category of commutative monoids on
the tensor of C. We will �nd that frames can be characterised as special types of
objects in CMon(PreFrm). In the next section we will then be able to use the
following results to give us facts about frames. We need the following well known
(see e.g. lemma 4.1 of [JV91]) general result about symmetric monoidal categories,

Theorem 2.5.1 CMon(C) has �nite coproducts. They are given by tensor (and

unit).

Proof: Say (A; �A; eA); (B; �B ; eB) are two objects of CMon(C), de�ne
� : (A
B)
 (A
B)! (A
B) to be the composite

(A
B)
 (A
B)
�=
! (A
A)
 (B 
B)

�A
�B
�! A
B

and e : 
! A
B to be



�=
! 




eA
eB
�! A
B.

From these de�nitions it is easily established that 
 can be viewed as a functor
CMon(C)�CMon(C)�!CMon(C). If 
 is left adjoint to the diagonal functor

� :CMon(C)�!CMon(C) � CMon(C)

then 
 is a coproduct operation.
Given a commutative monoid (A; �A; eA) the map �A : A
A! A can be viewed as
a natural transformation from 
� to Id and given a pair of commutative monoids
(A; �A; eA) and (B; �B ; eB) the maps

A
�=
! A



1
eB
�! A
B

B
�=
! 

B

eA
1
�! A
B

de�ne a natural transformation from Id to �
.
That these natural transformations satisfy the triangle equalities for 
 being left
adjoint to � follows from the fact that e is a unit. So 
 a � as required.
That (
;�=; Id) is initial in CMon(C) requires a similar manipulation. 2

It is not the case that we can extend the above theorem to non-commutative
monoids. i.e. coproduct in Mon (C), the category of monoids over C, is not given
by tensor. The above proof breaks down since �A : A 
 A ! A is not a monoid
homomorphism from A
A to A unless A is a commutative monoid.
As for a concrete counter example we look at the case where C=Ab, Abelian groups.
Then CMon(Ab) is the category CRng of commutative rings and Mon(Ab) is
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the category Rng of rings. Say R is a ring and x; y 2 R have the property that
xy 6= yx. There is a unique ring homomorphism (f) from the commutative ring
Z[x] of polynomials over x to R that maps the polynomial x to x, and similarly
there is a ring homomorphism (g) from Z[y] to R that maps y to y. Now

Z[x]
 Z[y] = Z[x; y]

where Z[x; y] is the commutative ring of polynomials over the set fx; yg. So if this
tensor gave coproduct in the category of rings we would �nd that there is a ring
homomorphism from Z[x; y] to R corresponding to f; g. The image of this ring ho-
momorphism would be a commutative subring of R. This contradicts the fact that
xy 6= yx. In the context of a counter example it is appropriate to use the excluded
middle: if a theorem is not true classically it certainly won't be true constructively.
However, more subtly, the reader should be aware that whenever we make the as-
sertion `Ab is monoidal closed', we are assuming a natural numbers object. This
is because we need a natural numbers object in order to prove that Abelian group
presentations present.

If we may assume further that C is symmetric monoidal closed (i.e. that 8A 2 Ob(C)
A
 ( ) a [A! ]) then we have another result about the creation of colimits:

Theorem 2.5.2 The forgetful functor F :CMon(C) ! C creates all �ltered colim-

its.

Proof: Say D : J �! CMon(C) is a �ltered diagram in CMon(C). Since 

preserves colimits in each of its coordinates we can do the following manipulations:

colimiFD(i)
 colimjFD(j) �= colimi(FD(i)
 colimjFD(j))

�= colimi(colimj(FD(i)
 FD(j)))

�= colim(i;j)FD(i)
 FD(j)

But from a piece of well known `abstract nonsense' we know that

colim(i;j)(FD(i)
 FD(j)) �= colimi(FD(i)
 FD(i))

since J is a �ltered category and so the monoid operation �D(i) on the D(i)s induce
a function

�D : colimiFD(i)
 colimiFD(i)! colimiFD(i)

As for a unit on colimiFD(i) note that the composite



eD(i)- FD(i)

`
FD(i)- colimiFD(i)

(where the
`
FD(i) is an edge of the colimit cocone on FD) is the same for every i

(use �lteredness of J) and so de�ne a unit (eD) for colimiFD(i). It is then easy to
check that (colimiFD(i); �D; eD) is the colimit of D in CMon(C). 2
So to complete our discussion about the existence of colimits in the categoryCMon(C)
all we need to do is �nd out whether coequalizers exists or not. It turns out that the
we have a more general theorem relating the existence of coequalizers in C to the
existence of coequalizers inMon(C), the category of monoids over C. Compare this
to our examination of �nite coproducts above; there we saw that the description of
coproducts in terms of tensor did not extend to the non-commutative case.
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Theorem 2.5.3 (The generalized coverage theorem) If C is a symmetric monoidal

closed category and

(A; �A; eA)
f-

g
- (B; �B ; eB)

is a diagram in Mon(C) then if c : B ! C is the coequalizer of

B 
A
B
�(1
 f 
 1)-

�(1
 g 
 1)
- B

(where � is ternary multiplication induced by �B) then C can be given a monoid

structure (C; �C ; eC) such that

(A; �A; eA)
f-

g
- (B; �B ; eB)

c- (C; �C ; eC)

is a coequalizer diagram in Mon(C).

Proof: The de�nition of eC is just the composite c Æ eB . De�ning �C is a little
more involved. Since C is closed we know that the endofunctor ( ) 
 B preserves
coequalizers, hence the diagram

B 
A
B 
B
�(1
 f 
 1)
 1-

�(1
 g 
 1)
 1
- B 
B

c
 1- C 
B

is a coequalizer diagram in C. But by associativity of the commutative monoid B
the morphisms �(1
 f 
 1)
 1 and �(1
 g
 1)
 1 are equalized by the morphism

B 
B
�B
! B

c
! C

and so there exists a (unique) map R : C 
B ! C such that R(c
 1) = c�B.
But we have two commutative squares:

B 
B 
A
B
1
 �(1
 f 
 1)-

1
 �(1
 g 
 1)
- B 
B

C 
B 
A
B

c
 1
 1
 1

? 1
 �(1
 f 
 1)-

1
 �(1
 g 
 1)
- C 
B

c
 1

?

R(c 
 1) equalizes the top row and so since c 
 1 
 1 
 1 is an epimorphism (as c
is) we know that R will equalize the bottom row. Hence it will factor through the
coequalizer of the bottom row. But the coequalizer of the bottom row is 1 
 c :
C 
B ! C 
C since C 
 ( ) preserves coequalizers. Hence 9�C : C 
C ! C such
that R = �C Æ (1 
 c). It is now a routine exercise to check that (C; �C ; eC) is a
monoid, that c is a commutative monoid homomorphism and that

(A; �A; eA)
f-

g
- (B; �B ; eB)

c- (C; �C ; eC)

is a coequalizer diagram in Mon(C) as required. For instance since R = �C(1
 c)
we have that �C(c 
 c) = �C(1 
 c)(c 
 1) = R(c 
 1) = c�B . i.e. c is a monoid
homomorphism. Also (c 
 c 
 c) is epic and so associativity for �C follows from
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associativity of �B. 2

As an immediate example we can use the above to construct coequalizers in the
category Rng of rings. If

A
f -

g
- B

is a digram in Rng, then it is well known that its coequalizer is given by taking the
quotient of B by the two sided ideal generated by ff(a) � g(a)ja 2 Ag. However
this two sided ideal is given by

I = f�bi(f � g)(ai)cijai 2 A; bi; ci 2 Bg

But the ring B=I is found by taking the quotient in Ab, and it is clear from the
above expression for I that the Abelian group B=I is the coequalizer in Ab of

B 
A
B
�(1
 f 
 1)-

�(1
 g 
 1)
- B

As another application we have restriction to the commutative case. In the proof of

the theorem it is a triviality to check that if B is a commutative monoid then so is
the monoid structure constructed on C. Hence we are able to lift coequalizers from
C to CMon(C). In fact most of our examples will be commutative, and in these
cases the following simpli�cation of the generalized coverage theorem is appropriate:

Theorem 2.5.4 If C is a symmetric monoidal closed category and

(A; �A; eA)
f-

g
- (B; �B ; eB)

is a diagram in CMon(C) then if c : B ! C is the coequalizer of

A
B
�B(f 
 1)-

�B(g 
 1)
- B

then C can be given a commutative monoid structure (C; �C ; eC) such that

(A; �A; eA)
f-

g
- (B; �B ; eB)

c- (C; �C ; eC)

is a coequalizer diagram in CMon(C). 2

A detailed discussion of why [2.5.3] is called the generalized coverage theorem is
omitted until Section 2.9. There we will need a theorem that goes in the opposite
direction; a theorem which shows how to �nd coequalizers in C given coequalizers
in some category that behaves like CMon(C). The forgetful functor going from
CMon(C) to C has a left adjoint if and only if free commutative monoids can be
found on C objects. We �nd, opposite to the coverage theorem, that if there is
some category D and a faithful functor U from D to C which has a left adjoint then
coequalizers in C can be constructed from particular coequalizers in D provided
we also know that C has �nite limits and image factorisations (see e.g. 1.51 of
[FS90] for a de�nition of image factorization). We know from Theorem [2.3.2]
how to construct the free frame on a preframe and so we know that the forgetful
functor from Frm to PreFrm has a left adjoint. It is easy to construct �nite limits
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and image factorisations in the category PreFrm of preframes (for the latter just
take the subpreframe generated by the set theoretic image of the function to be
factorized) so the next theorem will prove that PreFrm has coequalizers from an
assumption that Frm has coequalizers. Indeed the proof to follow is really just a
repetition of the preframe version of K�r�i�z's universal Theorem [2.3.3] (which itself
is just a manipulation of the proof in [JV91] that preframe presentations present).

Theorem 2.5.5 If C has �nite limits and image factorisations, and there is some

category D with a faithful functor U : D ! C which has a left adjoint F then for

any diagram

A
f -

g
- B

in C its coequalizer is given by the image factorization of B
�B
� UFB

Ue
! UE where

FB
e
! E is the coequalizer in D of

FA
Ff-

Fg
- FB

Proof: Let the image factorization described in the statement be written

q : B ! e[B]. Say there is a morphism B
�e
! �E in C such that �ef = �eg. So certainly

F �eFf = F �eFg and so there is a morphism d of D

d : E �! F �E

such that de = F �e. Pull the monomorphism � �E back along Ud to �nd a monomor-
phism i : J � UE. But from the pullback diagram we see that the map

B
�B
� UFB

Ue
! UE factors through i since:

Ud Æ Ue Æ � �B = U(d Æ e) Æ � �B

= UF �e Æ � �B

= � �E Æ �e

and hence the subobject J contains the subobject e[B]. So there is a map �d from
e[B] to �E such that �dq = �e. Uniqueness of �d follows if q is an epimorphism; but we
have equalizers in C and so the cover q is an epimorphism. 2

2.6 Frames as commutative monoids

We �rst introduce the more well known way of looking at frames as commutative
monoids i.e. as SUP-lattices with a monoid structure given by meet. Of course a
SUP-lattice is a complete poset, i.e. a poset with all joins. SUP-lattice homomor-
phisms preserve all joins. We have de�ned the category SUP.

The fact that SUP has coequalizers is shown in [JT84]. In Proposition 4.3 of
Chapter 1 they show that if R is any subset of M �M where M is a SUP-lattice
then the quotient of M by the congruence generated by R is given by the set

Q = fx 2M j8(z1; z2) 2 R; z1 � x , z2 � xg
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(cf R-coherent elements). So if

B
f -

g
- A

is a pair of arrows in SUP then use the relation f(fb; gb)jb 2 Bg to de�ne the
coequalizer of f and g. Clearly we can also use this general construct to describe
tensor product of SUP-lattices and so we see that SUP is a symmetric monoidal
closed category with coequalizers.

Now say we are given a commutative monoid (A; �; eA) over a SUP-lattice A
which is also a semilattice. i.e. � is idempotent. We can then give A a second order
with which the � operation becomes meet. This second order will not necessarily
coincide with �A. However the two orders will coincide if (and only if) a �A eA for
every a 2 A. For if we assume a �A eA for every a 2 A then since � is monotone in
both its coordinates we know

�A(a
 b) �A �A(a
 eA)

= a

�A(a
 b) �A �A(eA 
 b)

= b

for every a; b. Further if c �A a; b then c = �(c 
 c) �A �(a
 b) and so � is meet
with respect to the order �A. Clearly such a commutative monoid will be a frame.

So frames are particular types of commutative monoids over SUP. A (commu-
tative) monoid (A; �A; eA) is a frame if and only if (1) a � eA 8a 2 A and (2)
�A(a
 a) = a 8a 2 A. The �rst equation tells us that eA is the top element of A.
We �nd ([JV91]) that this result has a `preframe parallel':

Theorem 2.6.1 The category of frames is isomorphic to the full subcategory of

CMon(PreFrm) consisting of all objects (A; �; e) satisfying

(1) e(0) � a 8A

(2) �(aOa) = a

Proof: Say A is a frame. Then

_ : A�A! A

is clearly a preframe bihomomorphism. It is easy to check that

e : 
 �! A

i 7�!

"_
(f0g [ f1j1 � ig)

is a preframe homomorphism (
 is compact) and that this makes (A;_; e) into a
commutative monoid which satis�es (1) and (2).
Conversely say (A; �; e) is a commutative monoid which satis�es (1) and (2). Cer-
tainly e(0) is 0A and so A has a least element. We check that �(aOb) is the least up-
per bound of a and b in A. The fact that e is a unit tells us that a = �(aOe(0)) (8a).
But aOe(0) � aOb 8b and so a; b � �(aOb).
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Now say a; b � c then aOb � cOc and so �(aOb) � �(cOc) = c. 2

Frames can thus be viewed as SUP-lattices with a particular monoid structure
(corresponding to meet) or they can be viewed as preframes with a monoid structure
giving a �nitary join operation.
Say (A; �A; eA); (B; �B ; eB) are two commutative monoids in PreFrm. We know
that their coproduct in CMon(PreFrm) is given by

(A
B; �; e)

where � : (A
B)
 (A
B)
�=
! (A
A)
 (B 
B)

�A
�B
�! A
B and

e : 

�=
! 




eA
eB
�! A
B

Now 8a 2 A; b 2 B we have

e(0) = (eA 
 eB)(0O0)

= eA(0)OeB(0) � aOb

if eA(0) � a 8a and eB(0) � b 8b So if A;B are frames then the set

fu 2 A
 BjeA(0)OeB(0) � ug

is a subpreframe of A 
 B that contains all the generators of A 
 B and so is the
whole of A
B. Hence, if A;B are frames then A
B has a least element: 0AO0B.

�((aOb)O(aOb)) = (�A 
 �B)((aOa)O(bOb))

= (�A(aOa))O(�B(bOb))

= aOb

if �A(aOa) = a 8a and �B(bOb) = b 8b.
Notice that the equation �((aOb)O(aOb)) = aOb is enough to tell us that �(uOu) =
u for any u 2 A
B. This is because the set

fu 2 A
Bj � (uOu) = ug

is a subpreframe of A
B and contains all the generators of A
B.
Proof that it is a subpreframe: Certainly �(1O1) = 1. Say u; v satisfy �(uOu) =
u and �(vOv) = v. Then

�((u ^ v)O(u ^ v)) = �((uOu) ^ (vOv) ^ (uOv) ^ (vOu))

� �((uOu) ^ (vOv))

= �(uOu) ^ �(vOv) = u ^ v

In the other direction

u ^ v = �((u ^ v)O0) � �((u ^ v)O(u ^ v))

Say T �" A
B is such that �(tOt) = t for all t 2 T . Then for all t 2 T :

t = �(tOt) � �(

"_
TOt)

� �(

"_
TO

"_
T )
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Hence
W"

T � �(
W"

TO
W"

T ). Conversely

�(

"_
TO

"_
T ) =

"_

t

�(tO

"_
T )

=

"_

(t;�t)2T�T

�(tO�t)

�

"_

t2T

�(tOt) =

"_
T

where the penultimate implication is by directedness of T . 2

So the above shows us that if (A; �A; eA); (B; �B ; eB) are both frames then their
coproduct in CMon(PreFrm) is also a frame. i.e. frame coproduct is given by
preframe tensor.

Theorem 2.6.2 Loc has �nite products. If X;Y are two locales then the frame of

opens of their product is given by:


(X � Y ) �= 
X 

Y

where the tensor 
 is either preframe tensor or SUP-lattice tensor.

Proof: We have shown the result for the preframe tensor. The result for the
SUP-lattice tensor (is well known and) follows exactly the same path. It relies on
the characterization of frames as those members A of CMon(SUP) which satisfy
a � eA(1) 8a 2 A and �A(a
 a) = a for all a 2 A. Note that the proof that the set
fuj � (u
 u) = ug is a subSUP-lattice is less intricate. 2

The `creation of colimits' results of the previous section also preserves the frame
structure:

Theorem 2.6.3 F :Frm!PreFrm creates �ltered colimits

Proof: Say D : J !CMon(PreFrm) is such that its image is contained within
Frm and J is �ltered. So D(i) = (FD(i); �i; ei) is a frame for every object i of J .
We saw in the last section that colimD = (colimFD; �; e) where
� : colimFD
 colimFD! colimFD is such that

FD(i)
 FD(i)
�i- FD(i)

colimFD
 colimFD

�i 
 �i

?
�- colimFD

�i

?

commutes for every i,
and e : 
! colimFD is such that



ei- FD(i)

@
@
@
@
@

e
R
colimFD

�i

?
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commutes for every i.
Now recall that

colimFD =PreFrm<
`
i FD(i)jR >

for suitable R (see Theorem [2.4.3]) and �i : FD(i)! colimFD is given by a 7! a.
So to prove e(0) � u 8u 2 colimFD all we need to do is check that

e(0) � a 8a 2
`
i FD(i)

Say a 2 FD(i) then

e(0) = �iei(0) = ei(0) � a

and so e(0) � u 8u 2 colimFD.
Similarly to see that �(uOu) = u 8u 2 colimFD simply note that �i(aOa) = a

whenever a 2 FD(i). 2

Again the SUP-lattice parallel can be checked by an identical method and we
can write up both results as facts about locales:

Theorem 2.6.4 Loc has co�ltered limits. If D : J �! Loc is a co�ltered diagram

of locales then


limJD �= PreFrm <
a

i

FD(i)jRPreFrm >

�= SUP <
a

i

FD(i)jRSUP >

for suitable Rs. 2

Theorem 2.6.5 If

A
f -

g
- B

is a diagram in Frm then the preframe coequalizer of

A
B
�B(f 
 1)-

�B(g 
 1)
- B

is a frame, and is the coequalizer of f and g in Frm.

Proof: As in the last proof the concrete construction of the coequalizer enables
us to check the commutative monoid structure de�ned on it via Theorem [2.5.4]
satis�es the conditions (1) and (2).
Say c : B ! C is the preframe coequalizer of �B(f 
 1); �B(g 
 1). Then

fa 2 CjeC(0) � ag

fa 2 Cj �C (aOa) = ag

are both subpreframes of C and c factors through both of them since B is a frame.
Hence they are both the whole of C. 2

It should be apparent that this last result could also have been written with
SUP-lattices in place of preframes. The localic conclusion is:
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Theorem 2.6.6 Loc has equalizers. If

X
f -

g
- Y

is a diagram in Loc then the equalizer, E, is given by


E �= PreFrm < 
X (qua preframe)j
f(b) _ a = 
g(b) _ a 8a 2 
X; b 2 
Y >

�= SUP < 
X (qua SUP-lattice)j
f(b) ^ a = 
g(b) ^ a 8a 2 
X; b 2 
Y > 2

We will discuss how this last theorem is just the preframe version and the SUP-
lattice version of the coverage theorem in Section 2.9.

When it comes to discuss the pullback stability of proper and open locale maps
in the next chapter it will be useful to have the corollary:

Corollary 2.6.1 Loc has pullbacks. If

W
p2 - Y

X

p1

?

f
- Z

g

?

is a pullback diagram in Loc then


W �=PreFrm< 
X 

Y (qua preframe) j(
f(c) _ a)Ob = aO(
g(c) _ b)
8a 2 
X; b 2 
Y; c 2 
Z >

and


W �=SUP< 
X 

Y (qua SUP-lattice) j(
f(c) ^ a)
 b = a
 (
g(c) ^ b)
8a 2 
X; b 2 
Y; c 2 
Z >

(where the tensor is SUP-lattice tensor in the second equation and prefame tensor

in the �rst).

Proof: A pushout is just a particular kind of coequalizer. The corollary is an ap-
plication of the last result. 2

2.7 Applications in Loc

The following lemma shows us how the two descriptions of locale product given in
the last section lead to two very di�erent formulas for the closure of the diagonal
of a locale. The new preframe version of this formula will be used extensively later
on.

Lemma 2.7.1 If X is any locale then the closure of the diagonal � : X ,! X �X

is given by the closed sublocale

:# ,! X �X

where # 2 
(X �X) is given by
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# =
W"
f^i(aiObi)j ^i2I (ai _ bi) = 0 I �nite g

and equivalently by

# =
W
fa
 bja ^ b = 0g.

This preframe formula for # can be found in [Vic94].
Proof: From Section 1.7.1 we know that if i : Y ,! X is a sublocale then its closure
is given by

:8i(0) ,! X

and so all that we are doing is checking that 8�(0) = #
We prove the �rst claim of the theorem by looking at the case where

� : 
X

X ! 
X is given by the unique preframe homomorphism which sends
aOb to a _ b. It follows that

8�(0) =
W"
fJ j
�(J) = 0g

The result then follows quite clearly from the fact that for every J in 
X 
 
X

J =
W"
j ^i2Ij (a

j
iOb

j
i )

for some suitable collection of a
j
i ; b

j
i s (where all the Ijs are �nite). This is because

the set of all elements of this form forms a subpreframe of 
X

X which contains
all the generators of the tensor.

As for the SUP-lattice presentation of the closure of the diagonal we use the
same argument. Success of this argument hinges on the fact that the set of all
elements of 
X 

X (=SUP-lattice tensor) of the form

W
i2I ai 
 bi

for some set I forms a subSUP-lattice of 
X

X which contains all the generators
of the tensor and so is the whole of 
X 

X . 
� sends a
 b to a ^ b.

Notice also that these two parallel results are inter-provable; use the fact that
a
 b = (aO0) ^ (0Ob). For then (a _ 0) ^ (0 _ b) = 0 if a ^ b = 0 and so certainly

W
fa
 bja ^ b = 0g �

W"
f^i(aiObi)j ^i2I (ai _ bi) = 0 I �nite g

In the other direction say ^i2I(ai_bi) = 0. Then (^i2J1ai)^(^i2J2bi) = 0 for every
J1; J2 �nite with J1; J2 � I; I � J1 [ J2 by the �nite distributivity law of [1.2.6].
But by the same �nite distributivety law (and the equation aOb = (a
 1)_ (1
 b))
we have

^i(aiObi) = ^i((ai 
 1) _ (1
 bi))

=
_
[^i2J1(ai 
 1) ^ ^i2J2(1
 bi)]

=
_
[((^i2J1ai)
 1) ^ (1
 (^i2J2bi))]

=
_
(^i2J1ai)
 (^i2J2bi)

�

_
fa
 bja ^ b = 0g 2

Recall in Chapter 1 that we de�ned the specialization order on a space. The
localic analogue is the specialization sublocale. It is clear that if, for any locale X ,
we de�ne v,! X �X by
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(v) � Fr < 
X 

X qua frameja
 1 � 1
 a 8a 2 
X >

then we will have captured the de�ning spatial characteristic of the specialization
order (namely that x v y if and only if for every open a if x 2 a then y 2 a). The
tensor in the above is the SUP-lattice tensor. On the preframe side we have:

Lemma 2.7.2 
(v) �= Fr < 
X

X qua framejaO0 � 0Oa 8a 2 
X >, where


 is preframe tensor.

Proof: Take aOb to (a
 1)_ (1
 b) and a
 b to (aO0)^ (0Ob). The relations are
preserved and so these assignments de�ne frame homomorphisms between the two
presentations of 
(v). 2

Lemma 2.7.3 v ^ w= �, where ^ is meet in the poset Sub(X�X), and w� �Æ v

(� is the twist isomorphism X �X ! X �X).

Proof: (We prove this fact using preframe techniques though SUP-lattice tech-
niques could equally well have been used.)
Certainly � �Sub(X�X)v, since


l : 
(v) �! 
X

aOb 7�! a _ b

is clearly well de�ned and so

X
l - v

R
@
@
@
@
@

�
R 	�

�
�
�
�
	

X �X

commutes.
Symmetrically � � (w).
Say z : Z ,! X �X is some sublocale with the property that

Z �Sub(X�X) (v); Z �Sub(X�X) (w)

So there exists 
m : 
(v)! 
Z and 
m� : 
(w)! 
Z with


m(aOb) = 
z(aOb); 
m� (aOb) = 
z(aOb)

It follows that for all b 2 
X


z(bO0) = 
m(bO0)

� 
m(0Ob) = 
z(0Ob)

and by the existence of m� we �nd


z(0Ob) = 
m� (0Ob)

� 
m� (bO0) = 
z(bO0)

i.e. 
z(bO0) = 
z(0Ob) and so

�1 Æ z = �2 Æ z
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Hence Z �Sub(X�X) �. 2
Of course this result is true spatially if (and only if) the topological space is T0.

Our next comment is that we can now show that a locale map f : X ! Y is a
sublocale if and only if it is a regular monomorphism. This is a well known basic
fact about locales and is equivalent to the statement that a frame homomorphism is
a regular epimorphism if and only if it is a surjection. But since we have shown that
Frm is suitably algebraic this follows at once. [For a proof notice that if q : A! C

is a frame surjection then it is the coequalizer of

B
�1 -

�2
- A

where B is the congruence on A given by f(a1; a2)jq(a1) = q(a2)g. In the other
direction we can use the coverage theorem with C=SUP to show that coequalizers
in Frm are surjections since coequalizers in SUP are surjections.]

Inside Frm we then �nd that a homomorphism h : A! B can be factored as

A
[ ]
�! (A= �h)

i
,! B

where [ ] is a surjection and �h is the frame congruence a1 �h a2 if and only if
h(a1) = h(a2). This factorization enjoys the property that if h can also be factored
as

A
q
�! C

l
�! B

for some surjection q then there is a frame homomorphism k : C ! A= �h such
that

k Æ q = [ ] i Æ k = l

Translated to a fact about locales this means that if f : X ! Y is a locale map
then it can be factored as

X
q
! f [X ]

i
,! Y

where q is an epimorphism and i is a regular monomorphism, and if f can also be
factored as

X
�q
! Z

�i
,! Y

where �i is a regular monomorphism then there is a locale map p : f [X ] ! Z such
that

p Æ q = �q �i Æ p = i

This result implies that any locale map factors uniquely (up to isomorphism) as
an epimorphism followed by a regular monomorphism. This is a well known result
of locale theory.

2.8 Tychono�'s theorem

The following proof is what appears in Johnstone and Vickers' paper [JV91].

Theorem 2.8.1 The product of compact locales is compact
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Proof: We need to show, given a set (Ai)i2I of compact frames, that their coprod-
uct
`
i Ai is compact.

It is well known that just as arbitrary joins can be written as directed joins of �nite
joins, arbitrary coproducts can be written as �ltered colimits of �nite coproducts.
We �rst check that �nite coproducts of compact frames are compact. Since 
 is
compact we know that nullary frame coproducts are compact. Say A;B are two
compact frames. Then the functions

A ! 


a 7! (1 � a)

B ! 


b 7! (1 � b)

are both preframe homomorphisms and so

(a; b) 7�! (1 � b) _ (1 � a)

is a preframe bihomomorphism from A � B to 
 and hence induces a preframe
homomorphism h : A
B ! 
. I claim that

fu 2 A
Bjh(u) = 1 ) u = 1g

is a subpreframe of A
B and contains all the generators aOb of A
B. That it is
a subpreframe is easy enough (
 is compact!), and so we check that
h(aOb) = 1 ) aOb = 1.
But h(aOb) = 1 ) (1 � a) _ (1 � b) and so 1 � aOb follows.

Hence 8u 2 A 
 B h(u) = 1 ) u = 1. Now say S �" A 
 B has
W"

S = 1.

Then h(
W"

S) = 1 )
W"
s2S h(s) = 1 ) 9s 2 S h(s) ) s = 1, and

so A
B is compact.
Now, as we said above,

(
`
iAi) = colim�I(

`
i2�I Ai)

where �I ranges over the �nite subsets of I , and we've just checked that
`
i2�I Ai is

compact for every such �I .
Since all such

`
i2�I Ai are compact we know that there are preframe homomor-

phisms

h�I :
a

i2�I

Ai �! 


u 7�! (1 � u)

and so (since as we saw above colim�I(
`
i2�I Ai) is created from the preframe colimit)

there exists

h :
`
i Ai ! 


a preframe homomorphism such that

a

i2�I

Ai

@
@
@
@
@

h�I

Ra

i

Ai

��I

?
h - 
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commutes for every �I .
As before all we need to do (to conclude that

`
iAi is compact) is check that the

set

fu 2
`
iAijh(u) = 1 ) u = 1g

is a subpreframe of
`
iAi which contains all the generators. It is certainly a sub-

preframe.
That it contains all the generators is easy enough since the set of generators is just
the disjoint union of the

`
i2�I Ai. 2

2.9 The Coverage Theorems

2.9.1 SUP-lattice version

We describe Johnstone's coverage theorem as stated in II 2.11 of [Joh82]. Given a
meet semilattice A a function C : A! PPA is called a coverage if

(i) T �# a 8a 2 A 8T 2 C(a) and
(ii) C is meet stable, i.e. 8a 2 A;8T 2 C(a);8b 2 A

ft ^ bjt 2 Tg 2 C(a ^ b)

De�ne C � Idl(A) to be the set of C-ideals of A: they are the lower closed subsets
I of A such that 8a 2 A;8T 2 C(a) if T � I then a 2 I . If B is some frame then a
function f : A! B is said to take covers to joins if 8a 2 A;8T 2 C(a),

W
Bff�aj�a 2 Tg = fa

Johnstone's coverage result is: the set of C-ideals on a coverage forms a frame and

the map

A
< >
�! C � Idl(A)

which is de�ned to take a 2 A to the ideal generated by fag, is the free semilattice
homomorphism from A to a frame which takes covers to joins.

When Abramsky and Vickers were investigating quantales in [AV93] they found
it useful to view the coverage theorem as the statement that certain frame presenta-
tion could equally be viewed as SUP-lattice presentations. Indeed in the `Preframe
Presentation Presents' paper [JV91] the content of the coverage result is stated as
follows: given any meet semilattice A with a coverage on it then

Frm< A (qua meet semilattice) ja = _T T 2 C(a) >
�= SUP < A (qua poset) ja = _T T 2 C(a) >

We take Johnstone's coverage theorem to be this last result and prove that it implies
and is implied by the SUP-lattice version of the generalized coverage theorem. This
theorem then reads as the following coequalizer result: if

B
f -

g
- A

is a diagram in Frm and if

B 
A
^(f 
 1)-

^(g 
 1)
- A

e - E (�)
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is a coequalizer diagram in SUP then

B
f -

g
- A

e - E

is a coequalizer diagram in Frm.
Intuitively the presence of ^ in (�) corresponds to the meet stability condition that
we have on coverages.
We now assume Johnstone's coverage theorem and try to prove this coequalizer
result. Say we are given

B
f -

g
- A

in Frm. De�ne a coverage on A as follows:

fgb ^ a ^ fbg 2 C(fb ^ a) 8b 2 B;8a 2 A

ffb ^ a ^ gbg 2 C(gb ^ a) 8b 2 B;8a 2 A

T 2 C(
W
A T ) 8T � A

(It is easy to check that this de�nes a coverage.)

But it is clear that with this coverage the coequalizer of

B
f -

g
- A

(in Frm) must be the frame presented by

Frm< A (qua meet semilattice) ja = _T T 2 C(a) >

and also that the coequalizer of

B 
A
^(f 
 1)-

^(g 
 1)
- A

(in SUP) must be the SUP-lattice presented by

SUP< A (qua poset) ja = _T T 2 C(a) >

so an assumption of the Johnstone's coverage theorem allows us to conclude the
SUP-lattice version of the generalized coverage theorem.

Conversely let us assume the SUP-lattice version of the generalized coverage
theorem i.e. the coequalizer result of the previous page. Say we are given a coverage
C : A ! PPA on some meetsemilattice A. Let DA be the set of lower closed
subsets of A. It is clearly a frame where join is given by union and meet is given
by intersection. It is also the free frame on the meet semilattice A, this has been
remarked upon already just before Theorem [2.3.2]. Let B be the least frame
congruence on DA � DA which contains (# T; # a) for all pairs (T; a) such that
T 2 C(a). So there are frame homomorphisms

B
�1-

�2
- DA:

It is easy to see that if their coequalizer exists then it is
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Frm< A (qua meet semilattice) ja = _T T 2 C(a) >.

But

Lemma 2.9.1 The free SUP-lattice on A qua poset and the free frame on A qua

meet semilattice are isomorphic.

Proof: They are both given by DA. 2
Because of this fact we know that there is a SUP-lattice morphism e from DA to
the SUP-lattice E de�ned to be

SUP< A (qua poset) ja = _T T 2 C(a) >.

It is easy, using the meet stability property of coverages, to verify that

B 
DA
^(�1 
 1)-

^(�2 
 1)
- DA

e - E

is a coequalizer diagram in SUP and so Johnstone's coverage theorem will follow
from the generalized coverage theorem.

2.9.2 Preframe version

Before we tackle the preframe version of the coverage theorem we need to make an
observation about the free ^-semilattice on a poset.

Lemma 2.9.2 Let A be a join semilattice. Then the free meet semilattice on A

qua poset (i.e. SLat < Aja1 ^ a2 = a1 if a1 �A a2 >) is a distributive lattice and

is the free distributive lattice on A qua _-semilattice

(i.e. DLat < Aja1 _ a2 = a1 _A a2 8a1; a2 2 A; 0 = 0A >).

Proof: (This proof also gives a concrete description of ^-Slat< A qua poset>.) If
T; S 2 FA (i.e. if T; S are �nite subsets of A) then we write

S -U T

if and only if 8t 2 T there exists s 2 S such that s �A t. (-U is the upper or Smyth
preorder.) FA= -U (i.e. FA quotiented by this preorder) is the free ^-semilattice
on A qua poset. A is injected into FA= -U by a 7! [fag]. If [S]; [T ] are two elements

of FA= -U then

[S] ^ [T ] = [S [ T ].

This is easily veri�ed using the fact that [S] � [T ] in FA= -U if and only if S -U T .

If A is a join semilattice then

[S] _ [T ] = [fs _ tj(s; t) 2 S � Tg]

and so FA= -U is a join semilattice. As for distributivity notice that

([S] _ [T ]) ^ [V ] = [fs _ tjs 2 S; t 2 Tg [ V ]

and

([S] ^ [V ]) _ ([T ] ^ [V ]) = [f�s _ �tj�s 2 S [ V; �t 2 T [ V g]
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It is easy to see,

f�s _ �tj�s 2 S [ V; �t 2 T [ V g -U fs _ tjs 2 S; t 2 Tg [ V

fs _ tjs 2 S; t 2 Tg [ V -U f�s _ �tj�s 2 S [ V; �t 2 T [ V g;

the latter by observing that (S [ V )� (T [ V ) � (S � T ) [ (A� V ) [ (V �A).

That FA= -U is the free distributive lattice on A qua _-semilattice follows a simple
manipulation: say f : A! B is a _-preserving function to a distributive lattice B.
Then there exists a unique meet preserving �f : FA= -U! B such that �f Æ [f g] = f .
Clearly for any a; b 2 A

�f([fag] _ [fbg]) = �f [fa _ bg]

= f(a _ b)

= f(a) _ f(b)

= �f [fag] _ �f [fbg]

and so �f([S] _ [T ]) = �f([S]) _ �f([T ]) follows since for any V 2 FA we have

[V ] = ^v2V [fvg]: 2

The preframe coverage theorem (5.1 of [JV91]) is as follows: let A be a join
semilattice and let C be a set of preframe relations of the form

^S �
W"
i2I ^Si

(where S; Si are �nite subsets of A and f^Siji 2 Ig �" A) which are join stable.

This means that if x 2 A and ^S �
W"
i ^Si is in C than

^fx _ y : y 2 Sg �
W"
i ^fx _ y : y 2 Sig

is also in C. Then

PreFrm < A (qua poset) jC >�= Frm < A (qua _-semilattice)jC >

the generators corresponding under the isomorphism in the obvious way.

The preframe version of the generalized coverage theorem is the following coequal-
izer result: if

B
f -

g
- A

is a diagram in Frm and if

B 
A
_(f 
 1)-

_(g 
 1)
- A

e - E

is a coequalizer diagram in PreFrm then

B
f -

g
- A

e - E

is a coequalizer diagram in Frm.

Let us assume the preframe coverage theorem. Say we are given

B
f -

g
- A

in Frm. De�ne C, a set of preframe relations on A, as follows:
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W"
A J �

W"
fjjj 2 Jg

for every directed J �" A and

a1 ^ a2 � a1 ^A a2 8a1; a2 2 A

and 8b 2 B;8a 2 A

fb _ a � gb _ a

gb _ a � fb _ a

It is easy to see that C is join stable. It is also easy to see that

PreFrm < A (qua poset) jC >

is the coequalizer of

B 
A
_(f 
 1)-

_(g 
 1)
- A

in PreFrm and that

Frm< A (qua _-semilattice) jC >

is the coequalizer of

B
f -

g
- A

in Frm. Hence the preframe version of the generalized coverage theorem follows
from the preframe coverage theorem.

If we look at the case of the preframe coverage theorem when C is the empty
set, it is then the statement that the free preframe on a poset A is equal to the
free frame on the join semilattice A if A is indeed a join semilattice. But such a
free preframe can be seen to be the ideal completion of the free semilattice on the
poset A, and such a free frame can be seen to be the ideal completion of the free
distributive lattice on the join semilattice A. But since Lemma [2.9.2] showed us
that the free semilattice and the free distributive lattice just described are the same
we know that their ideal completions are isomorphic. Hence we have proven the
preframe coverage theorem in the case when C is empty. i.e.

Lemma 2.9.3 Let A be a join semilattice. Then the free preframe on a A qua poset

is isomorphic to the free frame on A qua join semilattice. 2

Given a join semilattice A we will call the free frame on it KA. The fact that it is
also a free preframe will help us prove that the preframe version of the generalized
coverage theorem implies the preframe coverage theorem.

Say we are given a join semilattice A and a join stable collection of preframe
relations C. Let j : A� KA denote the inclusion of generators. Let B be the least
frame congruence on KA which contains all the pairs

(^KA
fjs : s 2 Sg; (^KA

fjs : s 2 Sg) ^KA
(
W"
i ^KA

fjsjs 2 Sig))

So there are two frame inclusions

B
�1 -

�2
- KA
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and it is easy to see that their coequalizer in Frm isFrm< A (qua _-semilattice)jC >.
Further more once we view KA as the free preframe on A (qua poset) then it can
be seen that the coequalizer of

B 
KA

_(�1 
 1)-

_(�2 
 1)
- KA

is equal to PreFrm< A (qua poset) jC >. Hence the preframe coverage theorem
follows from the generalized coverage theorem.

Of course it is a matter of opinion as to whether the coequalizer results really
capture the coverage theorems, particularly in view of the need for lemmas [2.9.1]
and [2.9.2]. However both these lemmas seem to follow a general form; see the
concluding remarks to this chapter.

2.9.3 Quantale version and general remarks

A quantale is a SUP-lattice A together with a monoidal structure

e 2 A

� : A�A �! A

with the property that � preserves arbitrary joins in both of its coordinates. In
other words a quantale is an object of Mon(C) where C is the symmetric monoidal
closed category of SUP-lattices. A good reference for quantales is [Ros90]. They
are investigated in [AV93] as models for various process calculi. In that investiga-
tion a coverage theorem for quantales is developed. For simplicity we examine the
commutative case although, with the obvious modi�cations, this analysis works for
general quantales. Given a commutative monoid A we say that C : A! PPA is a
coverage if and only if 8T 2 C(a);8b 2 A

ft �A bjt 2 Tg 2 C(a �A b):

The coverage theorem for quantales is then the statement that the presentation

Qu< S (qua monoid) j _ T � a 8T 2 C(a) >

is well de�ned and is isomorphic as a poset to

SUP< Sj _ T � a 8T 2 C(a) >.

The free SUP-lattice on a set S is the power set of S. But:

Lemma 2.9.4 The free quantale on a monoid S (i.e. Qu< S (qua monoid) >) is

isomorphic as a poset to the free SUP-lattice on the set S.

Proof: Both are given by PS where the monoid operation on PS is given by,
(for T1; T2 � S)

T1 � T2 = ft1 � t2jt1 2 T1 t2 2 T2g 2

We now prove that the quantale coverage result is implied by the generalized cov-
erage theorem applied to the category C=SUP.

Given a coverage C on some commutative monoid S let B be the least quantale
congruence on PS which contains the pair

(T; T [ fag)
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for every T 2 C(a).
We then have a pair of quantale maps

B
�1 -

�2
- PS

and it is clear that their coequalizer in Qu will be

Qu< S (qua monoid) j _ T � a T 2 C(a) >

It is also clear that

SUP< Sj _ T � a T 2 C(a) >

is the coequalizer of

B 
 PS
�(�1 
 1)-

�(�2 
 1)
- PS

in SUP and so the generalized coverage theorem implies the quantale coverage re-
sult.

It might be interesting, for further research, to look at CMon(PreFrm). We
know that this category will have coequalizers, and indeed one can write a coverage
theorem for it. Aside from these facts not much is known about this category as far
as the author is aware. It might be possible to use it in much the same way that
quantales were used as models for various process calculi in [AV93]. Restricting to
the category of idempotent commutative preframe monoids recaptures the analysis
of Section 2.6.

We now turn our attention to an application of the converse of the coverage
theorem (Theorem [2.5.4]). We take C=dcpo, the category of directed complete
partial orders. It clearly has �nite limits and image factorisations. The category D
is taken to be SUP-lattices, which we know has coequalizers. Also it is easy to see
that the forgetful functor from SUP to dcpo has a left adjoint F . Simply take

FA = SUP < A (qua dcpo) >

It follows at once that dcpo has coequalizers. From this we recover another well
known fact:

Theorem 2.9.1 dcpo is symmetric monoidal closed

Proof: Say A;B are two dcpos. Then de�ne C to be the least congruence on
Idl(A�B) which contains the pairs:

W"
t2T # (t; b) =# (

W"
T; b);8T �" A 8b 2 BW"

t2T # (a; t) =# (a;
W"

T ) 8a 2 A;8T �" B

Then there are two dcpo homomorphisms:

C
�1-

�2
- Idl(A�B)

It is easy to see that A
B is the coequalizer of these two maps. 2
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The next step is to investigate CMon(dcpo). We know that this category has
coequalizers, although it is when we restrict our attention to the idempotent com-
mutative monoids that we get more interesting results. Provided we insist that the
unit of the idempotent commutative monoid is the greatest element with respect to
the original order on our dcpo A then, just as in the discussion preceding Theorem
[2.6.1], we can see that the monoidal operation will be meet. Furthermore it is a
meet which commutes with directed joins in both coordinates. i.e. A has �nite
meets and these meets distribute over directed joins: we have a preframe.

Further, just as in the discussion of Section 2.6, we can check that the colimits
of these preframes are found by suitable dcpo constructions. In short preframes
have coequalizers and a preframe tensor can be de�ned. i.e. by an application of
the opposite of the generalized coverage theorem we �nd that dcpo is symmetric
monoidal closed and if we follow this by an application of the generalized coverage
theorem to dcpo we recover Theorem [2.4.1]: PreFrm has a coequalizers.

This analysis works another way as well: if SUP has coequalizers then the
coverage theorem tells us Frm has coequalizers. An application of the opposite of
the coverage theorem implies that PreFrm has coequalizers. Hence the existence

of coequalizers can be chased throughout the square:

Frm

�
�
�
�
�� I@

@
@
@
@

SUP PreFrm

I@
@
@
@
@ �

�
�
�
��

dcpo

Similarly (at a `lower' level) existence of coequalizers can be chased around:

DLat

�
�
�
�
�� I@

@
@
@
@

_ � SLat ^ � SLat

I@
@
@
@
@ �

�
�
�
��

POS

Using the converse of the coverage theorem we know that coequalizers can be
dropped along each of the following:

Frm PreFrm SUP dcpo

DLat

Idl

6

^ � SLat

Idl

6

_ � SLat

Idl

6

POS

Idl

6
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We can also look at Lemma [2.9.2] in another way; it is just the statement that

DLat
U- ^ � SLat

_ � SLat

F

6

U_- POS

F^

6

commutes where the F s are free functors and the Us are forgetful functors. Notice
also that Lemma [2.9.1] follows from the same lemma but with ^ and _ inter-
changed. To see this last observation note that the free SUP lattice on A qua poset
is given by Idl(F_A) where F_ is the free _-semilattice on A qua poset. Also, if A
is a meet semilattice then the free frame on A qua ^-semilattice is Idl(D) where D

is the free distributive lattice on A qua meet semilattice. So, these lemmas seem to
follow from a sort of Beck-Chevalley condition.

The cube

Frm � PreFrm

I@
@
@
@
@

I@
@
@
@
@

SUP �

6

dcpo

DLat

6

� ^ � SLat

I@
@
@
@
@

I@
@
@
@
@

_� SLat

6

� POS

6

is a useful visualisation of the algebra underlying locale theory.

Finally, by Linton's theorem [Lin69], it is interesting to note that `coequalizers
are enough'. Once (reexive) coequalizers can be found in a node C of the above
cube then all colimits in C can be constructed by `lifting' them from any node
below C. Also, the existence of reexive coequalizers in CMon(C) can be found
by the existence of reexive coequalizers in C (see Exercise 0.1 of [Joh77]): the
generalized coverage theorem, as a statement about the existence of coequalizers,
can be recovered through this result.



Chapter 3

Open and Proper Maps

3.1 Introduction

We now return to our locale theory. De�nitions of proper and open maps are given,
and we see that these are just generalisations of closed and open sublocales. Basic
results about these maps are proved side by side so that the similarities between the

theories of the two classes should be apparent without too much comment. Impor-
tantly these classes of maps are closed under pullback. This fact had been observed
by Joyal and Tierney in [JT84] for the class of open maps, and was used in their de-
scription of the discrete locales as those locales whose �nite diagonals are open. We
look at the equivalent result for proper maps and �nd a description for the compact
regular locales (Vermeulen, [Ver91], noticed this description): they are those locales
whose �nite diagonals are proper. We can now justify the assertion made in the
abstract that the category of discrete locales and the category of compact regular
locales are parallel to each other. It is a trivial fact that the discrete locales form a
regular category since they are equivalent to Set. We prove the parallel result: the
compact regular locales form a regular category. Of course classically this is a well
known consequence of Manes' theorem which states that the category of compact
Hausdor� spaces is monadic over Set (see 2.4 III of [Joh82]). Apart from this last
theorem the results of the chapter are in general known ([JT84] or [Ver92]), the
novelty is in the presentation: parallel results are presented with parallel proofs
based on the preframe techniques developed in the previous chapter.

3.2 Basic de�nitions and results

The importance of the next two de�nitions cannot be over emphasised:
De�nition: f : X ! Y is a map between locales. Then
f is open i�
(1) 
f has a left adjoint 9f ,
(2) 9f is a SUP-lattice homomorphism,
(3) 9f (a ^ 
fb) = b ^ 9fa 8a 2 
X; b 2 
Y . (Frobenius condition.)
f is proper i�
(1) 
f has a right adjoint 8f ,
(2) 8f is a preframe homomorphism,
(3) 8f (a _ 
fb) = b _ 8fa 8a 2 
X; b 2 
Y . (coFrobenius condition.)

Clearly condition (2) of the open de�nition and condition (1) of the proper
de�nition are redundant. See [JT84] and [Ver92] for some alternative descriptions
of the open and proper maps respectively. The classical intuition to apply is the idea
of open and proper continuous maps between topological spaces. It is immediate

75
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that these two classes of maps are closed under composition. We develop the theories
of open and proper locale maps side by side noting their similarities. We argue (by
example) that the two theories are parallel to each other.

Lemma 3.2.1 If X;Y are stably locally compact locales then f : X ! Y is semi-

proper if and only if it satis�es (2) in the de�nition of proper.

Proof: Recall from the de�nition of CohLoc in Section 1.7.3 that f is semi-proper
if and only if 
f preserves �. If 
f preserves � then to prove that 8f preserves
directed joins it is suÆcient to show that for every b 2 
X ,

8f (b) =
W"
fcj
f(c)� bg

However 8f (b) =
W"
fcjc� 8f (b)g since Y is stably locally compact, and c� 8f (b)

implies 
f(c) � b since 
f preserves � and 
f8f (b) � b. Trivially 8f preserves
�nite joins since it has a left adjoint.

In the other direction say 8f preserves directed joins. Then if a � b, (a; b 2 
X)

and 
f(b) �
W"

S for some S �" 
Y then we have the following implications:

b � 8f (

"_
S)

b �

"_
f8f (s)js 2 Sg

a � 8f (s) some s 2 S


f(a) � s some s 2 S

Hence 
f(a)� 
f(b). 2

Theorem 3.2.1 A sublocale i : X0 ,! X is closed if and only if it is proper as a

locale map.

Proof: Say i : X0 ,! X is a closed sublocale. Then


X �! " 8i(0)

a 7�! 8i(0) _ a

corresponds to a sublocale of X isomorphic (in Sub(X)) to i : X0 ,! X . But
8a 2 
X and 8b � 8i(0) we have

8i(0) _ a � b , a � b

and so the inclusion of " 8i(0) into 
X is a (preframe homomorphism) right adjoint
to

a 7�! 8i(0) _ a

As for the coFrobenius condition it amounts to: 8a 2 
X 8b � 8i(0)

(b _ (8i(0) _ a) = a _ b

in this case.

Conversely say i : X0 ,! X is proper. We know i factors as

X0 ,! :8i(0) ,! X
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(i.e. X0 2 Sub(X) is contained in its closure.) To check that X0 is a closed sublocale
it is suÆcient to check that :8i(0) �Sub(X) X0 and to see this it is suÆcient to prove
that


X0 �! " 8i(0)


i(a) 7�! 8i(0) _ a

is a well de�ned frame homomorphism. It is well de�ned since

8i(0 _ 
i(a)) = a _ 8i(0)

by the coFrobenius condition and is easily seen to be a frame homomorphism. 2

Theorem 3.2.2 A sublocale i : X0 ,! X is open if and only if it is open as a map.

Proof: Say i : X0 ,! X is open. (X0 ,! X) �= (a ,! X) in Sub(X) for some
a 2 
X . But


X �! # a

�a 7�! a ^ �a

has a left adjoint: the inclusion of # a into 
X . The Frobenius condition then
reads: 8�a 2 
X; 8b � a

b ^ (�a ^ a) = �a ^ b

which is clearly true.
Conversely, say we have some open map i : X0 ,! X which is also a sublocale. I
claim it is equal (in Sub(X)) to the open sublocale:

9i(1) ,! X

To check 9i(1) �Sub(X) X0 we need to verify


X0 �! # 9i(1)


i(a) 7�! 9i(1) ^ a

is well de�ned. But the Frobenius condition on i implies:

9i(1 ^ 
i(a)) = a ^ 9i(1)

To check X0 �Sub(X) 9i(1) we need to know that

# 9i(1) �! 
X0

9i(1) ^ a 7�! 
i(a)

is well de�ned. It clearly is since 
i9i(1) = 1. 2.

We examine the case of locale maps to the terminal locale 1, i.e. we look at the
maps ! : X ! 1. In the case when codomain of our map is the terminal object 1
the Frobenius condition is automatic once the left adjoint to 
! is found. We check

9!(a ^ 
!(i)) = i ^ 9!(a)

(N.B. it is always the case that 9f
fa � a. Hence all we ever need to check is
a ^ 9f (b) � 9f (b ^ 
fa).)
So we'd like to verify i ^ 9!(a) � 9!(a ^ 
!(i)). As usual when reasoning in 
 we
have only to check that
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i ^ 9!(a) = 1 ) 9!(a ^ 
!(i)) = 1

But if i ^ 9!(a) = 1 then i = 1 and 9!a = 1. Since i = 1 implies 
!i = 1 the result
is seen to be trivial. What we have shown here is that for any locale X the unique
map ! : X ! 1 is open if and only if 
! has a left adjoint.

A locale is said to be open if and only if ! : X ! 1 is an open map. Notice that if
we assume the excluded middle then 9! : 
X ! 
, a left adjoint to 
!, can always
be de�ned:

9!(a) = 0 if and only if a = 0

and so (assuming the excluded middle) all locales are open.

We can apply a similar analysis to the proper maps whose codomain is the
terminal locale and get a similar result: ! : X ! 1 is proper if and only if 8! is a
preframe homomorphism (if and only if X is compact). To check this fact we only
need to prove the coFrobenius condition from the assumption that 8! is a preframe
homomorphism. But i � 8!
!(i) for any i and so

i _ 8!(a) � 8!(a _ 
!(i))

For the opposite direction note that


!(i) =
W"

(f0g [ f1j1 � ig)

and so if 8!(a _ 
!(i)) = 1 then a _ 
!(i) = 1 i.e.

1 = a _

"_
(f0g [ f1j1 � ig)

=

"_
(fag [ f1j1 � ig)

By applying 8! to both sides we see

1 =
W"

(f8!(a)g [ f1j1 � ig)

and so 1 � 8!(a) or 1 � i, i.e. 1 � 8!(a) _ i.

3.3 Pullback stability

We have the de�nition: f : X ! Y is a surjection if and only if 
f is an injection
(if and only if f is an epimorphism). A straightforward application of the Frobenius
condition shows that any open f : X ! Y is a surjection if and only if 9f (1) = 1,
and similarly an application of the coFrobenius condition shows that any proper
f : X ! Y is a surjection if and only if 8f (0) = 0.
We will �nd that the theorems:

Theorem 3.3.1 For any locale X, X �= 1 , ! : X ! 1 and � : X ! X �X

are open surjections

Theorem 3.3.2 For any locale X, X �= 1 , ! : X ! 1 and � : X ! X �X

are proper surjections

share the same proof. In order to �nd this proof we need to check pullback stabil-
ity for open and proper maps. We �nd that to prove these facts the SUP-lattice
presentation of the pushout in frame corresponding to the pullback is used for the
open result and the preframe presentation of the pushout in frame corresponding
to the pullback is used for the proper result. We have:
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Theorem 3.3.3 If

W
p2 - Y

X

p1

? f - Z

g

?

is a pullback diagram in Loc and g is proper then

(i) p1 is proper

(ii) 8p1
p2(b) = 
f8g(b) 8b 2 
Y

From (ii) we see that 8g(0) = 0 implies 8p1(0) = 0 and so the class of proper

surjections is pullback stable.

Proof: We saw in the last chapter (Corollary [2.6.1]) that 
W is isomorphic to

PreFrm< aOb 2 A
B (qua preframe) j(
f(c) _ a)Ob = aO(
g(c) _ b)
8a 2 
X; b 2 
Y; c 2 
Z >

We de�ne

8p1 : 
W �! 
X

aOb 7�! a _ 
f8g(b)

This clearly satis�es the `qua preframe' conditions in the presentation of 
W since
8g is a preframe homomorphism. Given any a 2 
X; b 2 
Y; c 2 
Z we need to
check

(
f(c) _ a) _ 
f8g(b) = a _ 
f8g(
g(c) _ b)

But this follows from the coFrobenius condition which is satis�ed by 
g a 8g.
So 8p1 is well de�ned. Is it right adjoint to 
p1?
Now 8a 2 
X; b 2 
Y

8p1
p1(a) = 8p1(aO0)

= a _
f8g(0)

� a

and


p18p1(aOb) = (a _ 
f8g(b))O0

= (aO0) _ (
f8g(b)O0)

= (aO0) _ (0O
g8gb)

� (aO0) _ (0Ob) = aOb

Hence 
p1 a 8p1 .

We check the coFrobenius condition for this adjunction. i.e. for every a; �a 2 
X
and every b 2 
Y we want

8p1((aOb) _ 
p1(�a)) = �a _ 8p1(aOb)
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Well,

LHS = 8p1((a _ �a)Ob)

= (a _ �a) _
f8g(b)

= �a _ (a _ 
f8g(b))

= �a _ 8p1(aOb):

Finally given b 2 
Y

8p1
p2(b) = 8p1(0Ob)

= 
f8g(b)

and so condition (ii) in the statement of the theorem is satis�ed. 2
This proof, via preframe techniques, is new. The SUP-lattice parallel to the last
theorem is true and follows a similar proof. It is proved in [JT84].

Theorem 3.3.4 If

W
p2 - Y

X

p1

? f - Z

g

?

is a pullback diagram in Loc and g is open then

(i) p1 is open

(ii) 9p1
p2(b) = 
f9g(b) 8b 2 
Y

From (ii) we see that 9g(1) = 1 implies 9p1(1) = 1 and so the class of open surjec-

tions is pullback stable.

Proof: We saw in the last chapter (Corollary [2.6.1]) that 
W is isomorphic to

SUP< a
 b 2 A
B (qua SUP-lattice) j(
f(c) ^ a)
 b = a
 (
g(c) ^ b)
8a 2 
X; b 2 
Y; c 2 
Z >

We de�ne

9p1 : 
W �! 
X

a
 b 7�! a ^ 
f9g(b)

This clearly satis�es the `qua SUP-lattice' conditions in the presentation of 
W
since 9g is a SUP-lattice homomorphism. Given any a 2 
X; b 2 
Y; c 2 
Z we
need to check

(
f(c) ^ a) ^ 
f9g(b) = a ^ 
f9g(
g(c) ^ b)

But this follows from the Frobenius condition which is satis�ed by 9g a 
g.
So 9p1 is well de�ned. Is it left adjoint to 
p1?
Now 8a 2 
X; b 2 
Y

9p1
p1(a) = 9p1(a
 1)

= a ^
f9g(1)

� a
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and


p19p1(a
 b) = (a ^ 
f9g(b))
 1

= (a
 1) ^ (
f9g(b)
 1)

= (a
 1) ^ (1

g9gb)

� (a
 1) ^ (1
 b) = a
 b

Hence 9p1 a 
p1.
We check the Frobenius condition for this adjunction. i.e. for every a; �a 2 
X and
every b 2 
Y we need

9p1((a
 b) ^ 
p1(�a)) = �a ^ 9p1(a
 b)

Well

LHS = 9p1((a ^ �a)
 b)

= (a ^ �a) ^
f9g(b)

= �a ^ (a ^ 
f9g(b))

= �a ^ 9p1(a
 b)

Finally given b 2 
Y

9p1
p2(b) = 9p1(1
 b)

= 
f9g(b)

and so condition (ii) in the statement of the theorem is satis�ed. 2

We can now exploit the pullback stability of open surjections and the statement
(ii) of the last theorem in order to show that open surjections are actually always
coequalizers. Again the proper parallel follows an identical proof. The open result
is in [JT84]. The proper parallel is proved in [Ver92]: his approach, however, follows
a di�erent line.

Lemma 3.3.1 If p : X ! Z is an open surjection then

X �Z X
p1 -

p2
- X

p- Z

is a coequalizer diagram in Loc.

Proof: pp1 = pp2 by de�nition of pullback, hence all we need to do is show that
any f : X !W with fp1 = fp2 factors through p : X ! Z.
So 
p1
f = 
p2
f and it is suÆcient to prove 9p : 
X ! 
Z satis�es 
p9p
fc =

fc for every c, for then 9p : Im(
f) �! 
Z has an inverse, 
p, which is a frame
homomorphism. And then c 7! 9p
fc will be a frame homomorphism from 
W to

Z.
Hence it is suÆcient to show 
p9pu = u for any u with 
p1u = 
p2u.


p9pu = 9p1
p2u pullback result [3.3.4]

= 9p1
p1u

= u

The last line is because 
p1 is a surjective open as it is the pullback of a surjective
open. 2
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Lemma 3.3.2 If p : X ! Z is a proper surjection then

X �Z X
p1 -

p2
- X

p - Z

is a coequalizer digram in Loc.

Proof: pp1 = pp2 by the de�nition of pullback. Thus all we need to do is show
that any f : X !W with fp1 = fp2 factors through p : X ! Z.
Say 
p1
f = 
p2
f . It is suÆcient to prove 8p : 
X ! 
Z has 
p8p
fc = 
fc
for every c 2 
W . For then 8p : Im(
f)! 
Z has an inverse 
p and so is a frame
homomorphism. (Recall that 8p
p(a) = a 8a since p is a proper surjection).
Hence it is suÆcient to check that 
p8pu = u for any u with 
p1u = 
p2u. For
any such u we have


p8pu = 8p1
p2u (pullback result [3.3.3])

= 8p1
p1u = u

The last line is because 
p1 is a proper surjection since it is the pullback of a proper
surjection. 2
We can now prove Theorems [3.3.1] and [3.3.2] which gave two characterisations of
the terminal locale. The proofs are so similar that we give but one,
Proof: Say ! : X ! 1 and � : X ! X �X are open surjections.

X
1 - X

X

1

? �- X �X

�

?

is a pullback. Hence

X
1 -

1
- X

�- X �X

is a coequalizer and so ��1 exists.

But

X �X
�2 - X

X

�1

? ! - 1

!

?

is a pullback. Hence

X �X
�1 -

�2
- X

! - 1

is a coequalizer. �1 = �2 since �
�1 exists. Therefore !�1 exists and so X �= 1. 2

The pullbacks of proper/open maps are proper/open; the pullback of a regular
monomorphism is well known to be a regular monomorphism. Hence:
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Lemma 3.3.3 (i) The pullback of a closed sublocale is closed. Further, the pullback

of :a ,! Y along f : X ! Y is the closed sublocale :
f(a) ,! X.

(ii) The pullback of an open sublocale is open. Further, the pullback of a ,! Y

along f : X ! Y is the open sublocale 
f(a) ,! X. 2

3.4 Discrete and compact regular locales

We will consider two full subcategories of locales: those whose �nite diagonals (it
suÆces to consider ! : X ! 1 and � : X ! X � X) are open, and those whose
�nite diagonals are proper. We prove that these two subcategories are in fact well
known: the �rst is the category of discrete locales and the second is the category
of compact regular locales. (So classically the second is the category of compact
Hausdor� spaces.) A proof of these two facts will clearly need to follow di�erent
paths since the de�nitions of discrete and compact regular are not parallel to each
other in any obvious way. We �rst tackle the proof of

Theorem 3.4.1 (Joyal and Tierney) X is discrete , X
�
! X �X and

X
!
! 1 are open.

An `open' lemma is needed �rst:

Lemma 3.4.1 If ! : X ! 1 is open then for any S � 
X
W
S =

W
fs 2 Sj9!s = 1g

(\you only have to worry about the elements that exist.")

Proof: Say s 2 S we need s �
W
f�sj�s 2 S 9!�s = 1g

We know s � 
!9!s i.e. s ^ 
!9!s = s Hence

s �

_
f�sj9�s = 1g

, s ^ 
!9!s �

_
f�sj9�s = 1g

, 
!9!s � s!
_
f�sj9�s = 1g

, 9!s � 8!(s!
_
f�sj9�s = 1g)

To prove the last line we are reasoning in 
 and so must but prove 9!s = 1 )
8!(s!

W
f�sj9�s = 1g) = 1. But this is trivial. 2

There is an alternative description of the statement 9!(s) = 1. Following John-
stone we say s 2 
X (for any locale X) is positive if and only if 8T � 
X if s �

W
T

then 9t 2 T . Clearly (for open X) if 9!(s) = 1 then s is positive. (For if s �
W
T

then 1 = 9!(s) � 9!(
W
T ) =

W
t2T 9!(t) and so 9t 2 T since 1 = f�g and so � 2 9!(t)

for some t 2 T .)
Conversely if s is positive (s 2 
X; X open) then

s =
W
f�sj9!(�s) = 1; �s � sg

by the last lemma and so there exists �s � s such that 9!(�s) = 1, hence 9!(s) = 1.

So the last lemma implies that if X is open then any s 2 
X is the join of
positive opens less than it. This result has a converse:
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Lemma 3.4.2 For any locale X if every s 2 
X is the join of positive opens less

than it then X is open.

This lemma is in Johnstone's paper `Open Locales and Exponentiation' ([Joh84]).
Proof: 8s 2 
X the statement

(8T )[(s �
W
T )) (9t 2 T )]

can be viewed as an element of the subobject classi�er (i.e. as a truth value). So
we have a map

9! : 
X �! 


s 7�! (8T )[(s �
_
T )) (9t 2 T )]

Clearly 9! preserves order.
We need to check 9! a 
!. To check 9!
!(i) � i we must verify

9!
!(i) = 1 ) i = 1

But 9!
!(i) = 1 means 
!(i) is positive. But 
!(i) =
W
f1j1 � ig and so 1 � i as


!(i) is positive.

To see a � 
!(9!(a)), i.e. that

a �
W
f1j1 � 9!(a)g,

we use our assumption that a is the join of positive element less than it, i.e.

a =
W
f�aj9!(�a) = 1; �a � ag

Clearly 9!(�a) = 1 and �a � a together imply 9!(a) = 1. 2

Proof of Theorem [3.4.1]: Say X
�
! X �X and X

!
! 1 are open.

We say for any a 2 
X that a is an atom i� a� a �Sub(X�X) � (i� a
a � 9�(1))
and 9!a = 1. (NB a� a is a sublocale of X �X ; it is easy to check that it is open
and that the element of 
(X �X) that corresponds to it is a
 a.)

The composition of two open maps is open. Hence 


!
! 
X

( )^a
! # a i.e. !a : a! 1

is open. The condition 9!(a) = 1 implies 9!a(1) = 1. Hence !a is an open surjection
for any atom a.
Further

a
m - X

a� a

�a

? m�m- X �X

�

?

is a pullback since m�m is a monomorphism in Loc. Thus �a is an open map.

9�a
(1) = 9�a


m(1)

= 
(m�m)(9�(1)) pullback result [3.3.4]

� 
(m�m)(a
 a) = 1
 1 = 1

Hence �a is an open surjection, and so by Theorem [4.3.1] a �= 1. Also atoms
behave as atoms should in the following way: if a1; a2 are two atoms with a1 � a2
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then a1 = a2. [Prooet: if a1 � a2 then there is a continuous map a1
q
! a2 in

Sub(X). But 1 �= a1 and 1 �= a2 hence 
q is easily checked to be a bijection as we
must have 
(!a1) = 
q Æ 
(!a2) and !a1 ; !a2 are isomorphisms.]
Let A denote the set of atoms.
De�ne:

� : 
X �! PA

u 7�! fa 2 Aja � ug

� clearly preserves �nite meets. As for joins it is suÆcient to check a �
W
i2I ui

implies 9i 2 I a � ui for any atom a.
Say a �

W
i2I ui

a ^
_
ui = a ) 9!a(a ^

_
ui) = 9!a(a)

)

_
9!a(a ^ ui) = 1

) 9i 9!a(a ^ ui) = 1 = 9!a(a) (reasoning in 
)

) a ^ ui = a since 9!a = (
(!a))�1

) a � ui

In fact � has a left adjoint:

� : PA �! 
X

I 7�!

_
faja 2 Ig

We check ��(I) � I .
Say �a 2 ��(I) then �a �

W
faja 2 Ig and so as above �a � a for some a 2 I . But

then �a = a by a property of atoms that we have just demonstrated.
Finally we must check that u = ��(u). i.e. u =

W
faja � ug.

First I claim that

9�(u) =
W
fv 
 vj v 
 v � 9�(u)g

Certainly:

9�(u) =
W
fv 
 wj v 
 w � 9�(u)g

But v 
 w � 9�(u) ) v 
 w � 9�(1)
i.e. v � w � � in Sub(X �X).
) v � w = w � v

) v 
 w = w 
 v

Thus

9�(u) =
W
fv 
 vj v 
 v � 9�(u)g

Apply 
� to both sides and recall u � 
�9�(u) and that if v 
 v � 9�(u) then
v � u. [This is because 9�(u) � u
 u , u � 
�(u
 u) = u .]
We obtain

u =
W
fvjv 
 v � 9�(u)g

=
W
fvjv 
 v � 9�(1) v � ug

Which is seen by the `open' Lemma [3.4.1] to imply
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u =
W
fvj 9!v = 1 v 
 v � 9�(1) v � ug

i.e. u =
W
faja is an atom, a � ug 2

What follows now is a very di�erent type of proof. It shows that just as the
class of locales whose �nite diagonals are open turns out to be well known (i.e. the
discrete locales) so does the class of locales whose �nite diagonals are proper: they
are the compact regular locales. The proof to follow, via preframe techniques, is
new.

Theorem 3.4.2 For any locale X, X is compact regular if and only if ! : X ! 1
and � : X ! X �X are both proper.

Proof: It is well known (see Johnstone [Joh82] III 1.3) that any regular locale is
strongly Hausdor� i.e. has a closed diagonal. So we know that any regular locale
X has � : X ! X �X proper.
We have established already that ! : X ! 1 is proper if and only if X is compact.
What needs to be proven is that if � : X ! X �X and ! : X ! 1 are proper then
8a 2 
X

a �
W"
fcjc� ag

Since � : X ! X �X is proper we know that for every a; b 2 
X

8�
�(aOb) = # _ (aOb)

where # is given by

# =
W"
f^i(aiObi)j ^i2I (ai _ bi) = 0 I �nite g

(Since � : X ! X � X is just the closed sublocale :# � X � X , see Lemma
[2.7.1].) Now

8�
�(aOb) =
W"
fI j
�(I) � a _ bg = 8�
�(bOa)

and so we see that for any a in 
X

0Oa � # _ aO0; i.e. 0Oa �
W"
f^i2I((ai _ a)Obi)j ^i (ai _ bi) = 0g - (�)

We will use the fact that (for �nite I),

^i(ai _ bi) =
W
I�J1[J2

((^i2J1ai) ^ (^i2J2bi))

where the J1; J2 are subsets of I . This �nite distributivity rule shows us that if
^i(ai _ bi) = 0 then for all �nite subsets J1; J2 � I with I � J1 [ J2 we have
(^i2J1ai) ^ (^i2J2bi) = 0. We can also use the above distributivity and the rules
relating O to 
, e.g. aOb = a
 1 _ 1
 b, to prove that

^i(aiObi) =
W
I�J1[J2

[(^i2J1ai)
 (^i2J2bi)]

(see Lemma [2.7.1]). Now 8! is a preframe homomorphism and so we can apply the
composite


X 

X
8! 
 1- 


X


!
 1- 
X 

X

�- 
X

to both sides of (�) to obtain

a �

"_
f
�(^i(
!8!(ai _ a)Obi))j ^i (ai _ bi) = 0g

=

"_
f
�[

_

I�J1[J2

[^i2J1(
!8!(ai _ a))
 (^i2J2)bi]]j ^i2I (ai _ bi) = 0g

=

"_
f

_

I�J1[J2

[(^i2J1 (
!8!(ai _ a))) ^ (^i2J2bi)]j ^i2I (ai _ bi) = 0g

and so to prove that a �
W"
fcjc� ag all we need do is check that
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(^i2J1(
!8!(ai _ a))) ^ (^i2J2bi) �
W
fcjc� ag

given any (�nite) collection of ais and bis with (^i2J1ai) ^ (^i2J2bi) = 0. Now

^i2J1
!8!(ai _ a) = 
!8!((^i2J1ai) _ a)
and 
!8!(�) =

W

Xf1j1 � �g for any � 2 
X

and so

^i2J1(
!8!(ai _ a)) ^ ^i2J2bi
=
W

Xf^i2J2bij1 � (^i2J1ai) _ ag

But for any c 2 f^i2J2bij1 � (^i2J1ai) _ ag we have c� a and so

(^i2J1(
!8!(ai _ a)) ^ (^i2J2bi) �
W
fcjc� ag

as required. 2

Given this last result we now change our notation slightly and shall refer to
the compact regular locales as the compact Hausdor� locales. The category of
compact Hausdor� locales will be written KHausLoc. We have just shown that

the compact Hausdor� locales are parallel to the discrete locales. Notice that if we
were not working in a constructive context and were assuming the excluded middle
then, since all locales would be open, such a parallel becomes invisible. It is only
by working constructively that we can appreciate the full force of the parallel.

3.5 Historically Important Axioms

This section consists of an argument which shows that the constructive prime ideal
theorem is parallel to the excluded middle. The section is separate from the rest of
the work and is the only time that we use the points of a locale in a context that is
not motivational. This result is new.

For any locale X consider the map

�X : 
X �! PptX

a 7�! fp 2 ptX j
p(a) = 0g

It is order reversing. Consider the results:

(i) 8X compact Hausdor�, �X is an injection.

(ii) 8X discrete, �X is an injection.

We show that (i) is true if and only if the constructive prime ideal theorem
(CPIT) is true and that (ii) is true if and only if the excluded middle holds. So we
have found a result which is true if and only the excluded middle holds and whose
proper parallel is true if and only if CPIT. The grander conclusion is that CPIT is
`parallel' to the excluded middle; though the reader is asked to bear in mind the
fact that, so far, no formal de�nition has been given for our parallel.

Before proof we note that if �Y is an injection then so is �X for any retract X
of Y . To see this say �Y is an injection and there exists q : Y ! X , i : X ! Y such
that q Æ i = 1. If a; �a 2 
X satisfy

fp 2 ptX j
p(a) = 0g = fp 2 ptX j
p(�a) = 0g
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then

f�p 2 ptY j
�p(
q(a)) = 0g = f�p 2 ptY j
�p(
q(�a)) = 0g

and so as �Y is an injection we get 
q(a) = 
q(�a) allowing us a = �a since q Æ i = 1.
Hence �X is injective.

Proof that (i) , CPIT: Assume CPIT. By the preceding remarks and the fact
that all compact Hausdor� locales are stably locally compact (and the fact that the
stably locally compact locales are the retracts of the coherent locales) it is clearly
suÆcient to prove �Y is an injection for every coherent Y in order to conclude that
�X is an injection for all compact Hausdor� X .

Say Y is coherent and I; J 2 Idl(K
Y ) are such that

fp 2 ptY j
p(I) = 0g = fp 2 ptY j
p(J) = 0g (�)

We prove J � I . Say j 2 J . Clearly, by the assumption of CPIT and by Lemma
[1.3.4] it is suÆcient to prove f [j] = 0 for every distributive lattice homomorphism

f : K
Y= �I�! 


in order to conclude j 2 I . But every such f corresponds to a point, p, of Y with the
property 
p(I) = 0. Hence 
p(# j) = 0 by (�) and so f [j] = 0 as required. Thus
J � I . I � J follows symmetrically and so �Y is an injection for every coherent Y
assuming CPIT.

Conversely assume �X is an injection for every compact Hausdor� X . To conclude
CPIT it is suÆcient (by Lemma [1.8.1]) to show that for every Boolean algebra B if
b 2 B has the property that f(b) = 0 for every distributive lattice homomorphism
f : B ! 
 then b = 0. Say b 2 B enjoys such a property. Set X to be the locale
whose frame of opens is Idl(B). So X is Stone and so is compact Hausdor�. Clearly

fp 2 ptX j
p(# b) = 0g = fp 2 ptX j
p(0) = 0g

by assumption about b 2 B. Hence, since �X is an injection, we get b = 0. 2

Proof that (ii) , excluded middle holds: Recall that all discrete locales
are constructively spatial (Section 1.6) and further that the frame homomorphism
corresponding to the counit:


�X : 
X �! PptX

a 7�! fpj
p(a) = 1g

is a surjection.

Assume the excluded middle. Say X is a discrete locale. Then 
X = PA for some
set A. It follows that for every T 2 
X

fp 2 ptX j
p(T ) = 0g = fp 2 ptX j
p(T c) = 1g

by the excluded middle (where T c is the complement of T ). If �X (T1) = �X (T2)
for some opens T1; T2. Then

fpj
p(T c1 ) = 1g = fpj
p(T c2 ) = 1g

and so by spatiality of X we have that T c1 = T c2 . Leading us to T1 = T2. Hence �X
is injective. We conclude (using the excluded middle) that (ii) is true.

Conversely say �X is an injection. We know PptX �= 
X . I claim that
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fpj
p(a) = 0g = :fpj
p(a) = 1g

where : is Heyting negation in Ppt(X). It will then follow that (
�X)
�1 Æ �X is

Heyting negation on 
X . Injectivety of �X will then imply injectivety of : : 
X !


X . But :::a = :a for any open of any frame and so ::a = a for all a 2 
X if
: is injective. So 
X would then be Boolean for every discrete locale X , i.e. PA
is Boolean for any set A. This implies the excluded middle is true in our topos.

Verifying the claim is straightforward. We need

fpj
p(a) = 0g =
S
fT 2 PptX jT \ fpj
p(a) = 1g = �g

The inclusion of the left hand side in the right hand side is trivial. Say T 2 PptX
is such that

T \ fpj
p(a) = 1g = �

Then T = fpj
p(�a) = 1g for some �a 2 
X since 
�X is a surjection to PptX . Thus
a ^ �a = 0 by spatiality of 
X (use fpj
p(0) = 1g = �). Thus for all p 2 T


p(a) = 
p(a) ^ 1 = 
p(a) ^ 
p(�a)

= 
p(a ^ �a) = 
p(0) = 0

Hence T � fpj
p(a) = 0g: 2

3.6 Further results about proper and open maps

We now turn to the question of regularity of our two parallel categories (the discrete
locales and the compact Hausdor� locales). We �nd that a proof that they are reg-
ular follows the same route. The fact that the category DisLoc of discrete locales
is regular is of course known already since we know that it is equivalent to Set

(where Set is our background topos). However the observation that the category
KHausLoc of compact Hausdor� locales is regular will bear much fruit: we know
from Freyd and �S�cedrov ([FS90]) that any regular category gives rise to an allegory
in the vein of `sets and relations'. Along the way some more technical results about
proper and open maps are shown.

Theorem 3.6.1 (Vermeulen) If Y
f
! X is a map between compact Hausdor�

locales then f is proper.

Proof:

Y
f - X

Y �X

(1; f)

? f � 1- X �X

�

?

is a pullback square so (1; f) is proper. But Y � X
�2
! X is proper as it is the

pullback of the proper map Y
!
! 1. Properness is easily seen to be stable under

composition. Hence �2 Æ (1; f) is proper. i.e. f is proper. 2
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Notice that exactly the same proof proves that if Y
f
! X is a map between

discrete locales then f is open.

To check that KHausLoc is regular we need to check that any f : X ! Y with
X;Y compact Hausdor� has a factorization as a cover followed by monomorphism.
Certainly it has a factorization in Loc as an epimorphism followed by a regular

monomorphism: X
q
! f [X ]

i
! Y (see Section 2.7) We o�er a

Proof that f [X ] is compact Hausdor�: [N.B. this result can be generalized in
the obvious way i.e. we only really need X compact and Y Hausdor�.]

f [X ]
i - Y

f [X ]� f [X ]

�f [X]

? i� i- Y � Y

�Y

?

is a pullback square and so �f [X] is proper.
To prove that ! : f [X ] ! 1 is proper we appeal to the following general result: if

X
q
! Y

f
! Z in Loc are such that f 0(= f Æ q) is proper and q is a surjection then f

is proper. Take the case f =!f [X] and f 0 =!X to prove that f [X ] is compact. The
proof of this general result is straightforward, can be found in [Ver92] and requires
the following manipulations: (note that since q is surjective 8q
q(d) = d 8d)
Say S �" 
Y ,

8f

"_
S = 8f8q
q(

"_
S)

= 8f 0
q(

"_
S)

= 8f 0

"_
f
qdjd 2 Sg

=

"_
f8f 0
qdjd 2 Sg

=

"_
f8f8q
qdjd 2 Sg

=

"_
f8fdjd 2 Sg

and

8f (a _ 
fb) = 8f8q
q(a _ 
fb)

= 8f 0(
qa _ 
f 0b)

= 8f 0
qa _ b = 8fa _ b: 2

Similarly if X
q
! f [X ]

i
! Y is the epi/regular mono decomposition of X

f
! Y , and

X;Y are discrete, then so is f [X ]. As before we see straight away that �f [X] is

open since it is a pullback of the open Y
�
! Y � Y . That ! : f [X ]! 1 is open then

follows exactly as before from:
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Lemma 3.6.1 If X;Y; Z are locales and X
q
! Y

f
! Z is such that f 0(= f Æ q) is

open and q is surjective (i.e. epi in Loc, i.e. 
q injective) then f is open.

This result can be found as Proposition 1.2 VII of [JT84].
Proof: De�ne

9f : 
Y ! 
Z

y 7! 9f 0
qy

Hence

9fy � z , 9f 0
qy � z

, 
qy � 
f 0z

, 
qy � 
q
fz

, y � 
fz (
q inj.)

and so 9f a 
f .
Also

9f (y ^
fz) = 9f 0(
qy ^ 
f 0z)

= 9f 0
qy ^ z = 9fy ^ z

and so f is open. 2
Heading towards a proof of regularity of KHausLoc (and DisLoc) we need some
technical lemmas:

Lemma 3.6.2 If X
f
! Y and �X

�f
! �Y are two open(proper) maps then

X � �X
f� �f
�! Y � �Y

is open(proper).
Proof: Take 9f� �f (a
 �a) = 9fa
9 �f�a. (Use SUP-lattice de�nition of tensor prod-
uct.) Take 8f� �f (aO�a) = 8faO8 �f�a. (Use preframe de�nition of tensor product.) 2

Lemma 3.6.3 KHausLoc�Loc is closed under the formation of �nite limits in

Loc. (i.e. the inclusion functor creates �nites limits.)

Notice that exactly the same proof (to follow) demonstrates that DisLoc�Loc is
closed under �nite limits.
Proof: The terminal locale 1 is compact Hausdor�. We �rst check that if X;Y are
compact Hausdor� then so is X � Y . X � Y

�1
! Y is proper since it is the pullback

of the proper map X
!
! 1. Hence composition with the proper Y

!
! 1 proves that

! : X � Y ! 1 is proper.
It is straightforward to check that

X � Y
Id - X � Y

(X � Y )� (X � Y )

�

? i- (X �X)� (Y � Y )

�X ��Y

?
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is a pullback, where i is the obvious twist isomorphism. It follows that � is proper,
and so X � Y is compact Hausdor�.
Say now that we are given an equalizer diagram

E
e - X

f -

g
- Y

in Loc, where X and Y are compact Hausdor�. First note that e is proper since

it is the pullback of the proper map �Y along (f; g). Thus since E
!
! 1 can be

factored as E
e
! X

!
! 1 we know that !E is proper. Further

E
e - X

E �E

�

? e� e- X �X

�

?

is a pullback since e is mono. Hence �E is proper and so E is a compact Hausdor�
locale. 2

Theorem 3.6.2 If X
m
! Y is a monomorphism in KHausLoc then m is a regular

monomorphism in Loc.

Proof: X
m
! Y can be factored as X

q
! m[X ]

i
! Y where q is a proper surjection.

But by a corollary to the pullback result (Lemma [3.3.2]) we know that for any
proper surjection q

X �m[X] X
p1 -

p2
- X

q- m[X ]

is a coequalizer diagram in Loc. By the results that we've just proven we know
that this diagram is in fact inside KHausLoc. Hence mp1 = mp2 )

p1 = p2 ) q is an isomorphism. Thus m is regular since i is. 2
This last result is really all we need to check that KHausLoc is regular. To prove
that a category is regular one needs to check that (it has �nite limits and) for any
f : X ! Y there is an image factorization

X
q
! f [X ]

i
,! Y

and such a factorization is pullback stable (see [FS90] or [BGO71]). But what we
have shown above is that the usual epi/regular mono decomposition in Loc gives
rise to such an image factorization. It is then easy to see that the covers are the
proper surjections and we know that these are pullback stable. We have proven:

Theorem 3.6.3 KHausLoc is regular.2

Also, as another corollary to [3.6.2], notice that subobjects in KHausLoc (i.e.
monomorphisms inKHausLoc) are exactly the closed sublocales of compact Haus-

dor� locales. Certainly they are proper; but we need [3.6.2] in order to conclude
that these subobjects are actually sublocales. Hence they are proper maps and are
sublocale maps. i.e. they are closed (use Theorem [3.2.1]).



Chapter 4

Compact Hausdor� Relations

4.1 Introduction

We establish the existence, via Freyd and �S�cedrov's de�nitions ([FS90]), of a cate-
gory of compact Hausdor� relations (parallel to the category of sets and relations;
composition is given by relational composition). We then give a much more con-
crete description of what this category is like i.e. we give an explicit de�nition of a
function that de�nes relational composition of closed sublocales.

We �nd that there is a bijection between the closed sublocales of a locale product
X � Y (where X and Y are compact Hausdor�) and preframe homomorphisms
from 
Y to 
X . This result is used to establish an equivalence between the cate-
gory of compact Hausdor� locales with closed relations and another category whose
morphisms are much more concrete. The connection between preframe homomor-
phisms and closed sublocales will be exploited considerable in the rest of this work,
in particular we are able to use the function that de�nes relational composition
of closed sublocales to turn our spatial intuitions (about relational composition of
closed subspaces) into suitable preframe formulas.

Although the results presented here are new we do �nd some of the corollaries to
them in Vickers' paper [Vic94]. The thesis is, form now on, entirely concerned with
the proper side of our parallel i.e. preframe techniques. However we will not prove
results in isolation, the open parallels of our results (which are all known) are stated
for completeness.

4.2 Relational composition

If C is a regular category and

P �
(p1; p2)- X � Y

Q �
(q1; q2)- Y � Z

93
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are monics in C, then the relational composition of P and Q (Q Æ P ) is given as
follows: form the pullback

P �Y Q
a2 - Q

P

a1

? p2 - Y

q1

?

then Q Æ P is de�ned to be the image of

P �Y Q
(p1a1)� (q2a2)- X � Y

If C is just Set then the pullback P �Y Q would be the set

f(x; y; �y; �z)j(x; y) 2 P; (�y; �z) 2 Q; y = �yg:

The function (p1a1)� (q2a2) is given by

(x; y; �y; �z) 7�! (x; �z)

and so its image is

f(x; �z)j9y (x; y) 2 P; (y; �z) 2 Qg

which is the usual de�nition of relational composition of subsets.
Given a general (regular) C we can now form the categoryREL(C) with C-objects as
objects and relations as morphisms. Composition is given by relational composition
and the identity on an object is the diagonal. In fact REL(C) is an allegory in the
sense of Freyd and �S�cedrov [FS90] (although see [BGO71] for an earlier description
of REL).

We will use the category REL(KHausLoc) a lot in what follows and shall call
it KHausRel.

The de�nition of relational composition as given above doesn't give us much of
an algebraic handle. In order to �nd such an algebraic handle we continue with
our spatial intuition. Say X;Y; Z are spaces andR1 � X � Y;R2 � Y �Z are both
closed. So Ri = :Ii where : is set theoretic complement and the Iis are open. (We
are only looking at the spatial case in order to justify the choice of formula to follow
and so are at liberty to use the excluded middle.)
We want R2 ÆR1 to be closed and so to de�ne Æ all we need de�ne is some function

� : 
(X � Y )� 
(Y � Z)! 
(X � Z)

such that R2 ÆR1 = : � (I1; I2). Given the facts about preframe tensors discussed
in Chapter 2 it should be clear that we only need be concerned with the cases

I1 = U1OV1 I2 = V2OW2

for some opens U1; V1; V2;W2. We know (x; z) 2 R2 Æ R1 i� 9y xR1y yR2z.
Hence (x; z) 2 �(I1; I2) i� 8y (x:R1y) _ (y:R2z). Hence

(x; z) 2 �(I1; I2) , 8y((x; y) 2 I1) _ ((y; z) 2 I2)

, 8y(x 2 U1 _ y 2 V1 _ y 2 V2 _ z 2 W2)

, (x 2 U1 _ z 2 W2) _ Y � V1 [ V2

, (x; z) 2 U1OW2 _ Y � V1 [ V2

Now say R1� X � Y;R2� Y � Z are closed sublocales. De�ne
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R2 ÆR1 = : � (aR1
; aR2

)

where aRi is the open corresponding to the closed sublocale Ri and
� : 
(X � Y )�
(Y � Z)! 
(X � Z) is de�ned on generators as

�(a1Ob1; b2Oc2) = a1Oc2 _ 
!(1 � b1 _ b2)

In fact we have to factor � through ��:

�� : 
X 

Y 

Z ! 
X 
 
Z

aObOc 7! aOc _ 
!(1 � b)

since to make sure that we are de�ning a function we need to de�ne it on all
generators of some tensor. We need to check that �� is well de�ned. i.e. that

(a; b; c) 7! aOc _ 
!(1 � b)

is a preframe trihomomorphism. This follows from the compactness of 
Y . Then
take �(I1; I2) = ��(

`
12 I1 _

`
23 I2) where the

`
s are frame coprojections.

Theorem 4.2.1 If X;Y; Z are compact Hausdor� locales then the function


X �
Y �
Z �! 
X 
 
Z

(a; b; c) 7�! (aOc) _
!(1 � b)

is a preframe trihomomorphism and so induces a preframe homomorphism

�� : 
X 

Y 

Z �! 
X 

Z

There are preframe homomorphisms


(�12) : 
X 
 
Y �! 
X 
 
Y 

Z

aOb 7�! aObO0


(�23) : 
Y 

Z �! 
X 
 
Y 
 Z

bOc 7�! 0ObOc

De�ne � : (
X

Y )�(
Y 

Z) �! 
X

Z by I �J = ��(
�12I_
�23J), then
if :I � X � Y;:J � Y � Z are two monics in KHausLoc then their relational

composition is given by

:(I � J).

Before proof we �nd an alternative formula for ��. Note that for a 2 
X; b 2 
Y;
c 2 
Z


�13(��(aObOc)) = 
�13(aOc _ 
!(1 � b))

= aO0Oc _
_
f1j1 � bg

� aObOc

Thus 
�13(��(I)) � I for all I 2 
X 

Y 

Z. And

��
�13(aOc) = ��(aO0Oc)

= (aOc) _
!(1 � 0)

� aOc
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and so J � ��
�13(J) for all J 2 
X 
 
Z. Hence �� is right adjoint to 
�13 i.e.
�� = 8�13 .
Proof: For I 2 
X 

Y , J 2 
Y 
 
Z we are trying to prove that
:J Æ :I = :8�13(IO0 _ 0OJ).
It is easy to see that (1

�)(IO0) = I (� : Y � Y � Y ) and so since
IOJ = (IO(0O0) _ (0O0)OJ) we have to prove

:J Æ :I = :8�13(1
 
�
 1)(IOJ)

Now set P
(p1;p2)

� X � Y � :I � X � Y; Q
(q1;q2)

� Y � Z � :J � Y � Z, and to
de�ne Q Æ P we form the pullback:

P �Y Q
a2 - Q

P

a1

? p2 - Y

q1

?

which is well know to be de�ned equivalently by the pullback

P �Y Q
p2a1 = q1a2- Y

P �Q

(a1; a2)

? p2 � q1- Y � Y

�

?

\

P �Y Q is a closed sublocale of P �Q (we are working in KHausLoc). The open
corresponding to this closed sublocale is given by


(p2 � q1)(#)

= (
p2)
 (
q1)(#)

(see Lemma [3.3.3]). Now


p2 : 
Y ! 
X 

Y !" I

b 7! 0Ob 7! I _ 0Ob


q1 : 
Y ! 
Y 

Z !" J

�b 7! �bO0 7! J _ �bO0

Recalling that

# =
W"
f^i(biO�bi)j ^i2I (bi _ �bi) = 0 I �nite g

we can see that the open corresponding to the closed sublocale P �Y Q is

(IOJ) _ (0O#O0)

The de�nition of Q Æ P is that it is the image of the composition

P �Y Q �
(a1 � a2)- P �Q �

(p1; p2)� (q1; q2)- X � Y � Y � Z
�14- X � Z

However P �Y Q� X � Y � Y � Z is less than
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X � Y � Z
1���1
� X � Y � Y � Z

in the poset Sub(X � Y � Y � Z). (This is just the statement that
0O#O0 � (IOJ)_ (0O#O0).) And so P �Y Q is a closed sublocale of X � Y �Z.
The open corresponding to it is given by (1
 
�
 1)((IOJ) _ (0O#O0))
= (1

�
 1)(IOJ). So the image of the composition

P �Y Q �
(a1 � a2)- P �Q �

(p1; p2)� (q1; q2)- X � Y � Y � Z
�14- X � Z

is given by the image of

:(1

�
 1)(IOJ)� X � Y � Z
�13
�! X � Z

(since �14 Æ (1��� 1) = �13) and the open corresponding to this image is

8�13(1

�
 1)(IOJ).

To see this last line recall that the image of f : X ! Y in KHausLoc is given by
:8f (0) ,! Y . 2

Yet another formula for � can be found:

�(a1Ob1; b2Oc2) = (a1Oc2) _ 
!(1 � b1 _ b2)

= a1Oc2 _

"_
(f0g [ f1j1 � b1 _ b2g

=

"_
(fa1Oc2g [ f1j1 � b1 _ b2g)

Theorem 4.2.2 KHausRel is a category.

Proof: The reader may consult the proof that REL(C) is a category for any regular
C (in [FS90] for example) in order to deduce that KHausRel is a category. We
include the following direct proof for completeness.

The problem is to show associativity of � and that # corresponds to the identity.
For suitable a1Ob1; b2Oc2; c3Od3 we �nd

�(a1Ob1; �(b2Oc2; c3Od3)) = �(a1Ob1;

"_
(fb2Od3g [ f1j1 � c2 _ c2g)

=

"_
(f�(a1Ob1; b2Od3)g [ f1j1 � c2 _ c3g)

=

"_
(f

"_
(fa1Od3g [ f1j1 � b1 _ b2g)g [ f1j1 � c2 _ c3g)

=

"_
(fa1Od3g [ f1j1 � b1 _ b2g [ f1j1 � c2 _ c3g)

A similar manipulation on �(�(a1Ob1; b2Oc2); c3Od3) reduces it to the same term.
# is given by the formula:

# =
W"
f^i(biO�bi)j ^i (bi _ �bi) = 0g

We want �(#; bOa) = bOa for appropriate a; b.
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�(#; bOa) =

"_
f�(^i(biO�bi); bOa)j ^i (bi _ �bi) = 0g

=

"_
f^i[(biOa) _ 
!(1 � �bi _ b)]j ^i (bi _ �bi) = 0g

Say (bi;�bi)i2I is a �nite collection of opens such that ^i(bi _ �bi) = 0. Using the
�nite distributivity law:

^i(bi _ �bi) =
W
(^i2J1bi) ^ (^i2J2

�bi)

(where the join is over all pairs J1; J2 � I such that J1; J2 are �nite and I � J1[J2)
we see that (^i2J1bi) ^ (^i2J2

�bi) = 0 for every such pair. By applying the same
�nite distributivity law to the meet

^i[(biOa) _ 
!(1 � �bi _ b)]

we �nd that to conclude �(#; bOa) � bOa it is suÆcient to prove:

(^i2J1 (biOa)) ^ (^i2J2
!(1 �
�bi _ b)) � bOa

But

^i2J2
!(1 �
�bi _ b) = 
!(1 � ^i2J2

�bi _ b)

� 
!(^i2J1bi � b)

by the fact that (^i2J1bi) ^ (^i2J2
�bi) = 0. However for any opens c; d

c ^
!(c � d) � d

(to see this formally note 
!(c � d) =
W
f1jc � dg and joins distribute over �nite

meets). Thus �(#; bOa) � bOa.

Proving the opposite inequality requires an application of Theorem [3.4.2]: we
need to know that compact Hausdor� locales are regular (as a separation axiom of
course, rather than as a whole category!). i.e. we exploit the fact that for any open
b,

b =
W"
fb0jb0 � bg

and so

bOa =
W"
fb0Oajb0 � bg

Say b0 � b. Then there exists c such that b0 ^ c = 0 and 1 � b _ c. So

b0Oa � (0Oa) _ 
!(1 � c _ b)

b0Oa � (b0Oa) _
!(1 � 0 _ b)

i.e.

b0Oa � ^i2f1;2g[(biOa) _ 
!(1 � �bi _ b)]

where b1 = 0;�b1 = c; b2 = b0 and �b2 = 0. But

^i2f1;2g(bi _ �bi) = (0 _ c) ^ (b0 _ 0)

= c ^ b0 = 0
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and so b0Oa � �(#; bOa). Hence bOa � �(#; bOa). 2

We have an important technical lemma which will help us relate closed sublo-
cales of X�Y to preframe homomorphisms 
Y ! 
X . Indeed will see that closed
sublocales of X � Y and preframe homomorphisms 
Y ! 
X are the same thing
provided X;Y are compact Hausdor�.

Lemma 4.2.1 If f1 : 
X ! 
 �X; f2 : 
Z ! 
 �Z are preframe homomorphisms

and X; �X;Y; Z; �Z are compact Hausdor� locales and I 2 
X 
 
Y; J 2 
Y 
 
Z
then

(f1 
 f2)(I � J) = (f1 
 1)(I) � (1
 f2)(J)

Proof: We �rst check the cases I = aOb; J = �bO�c.

(f1 
 1)(I) � (1
 f2)(J)

= ��((f1aObO0) _ (0O�bOf2�c))

= ��(f1aO(b _ �b)Of2�c)

=

"_
(ff1aOf2�cg [ f1j1 � b _ �bg)

= (f1 
 f2)

"_
(faO�cg [ f1j1 � b _ �bg)

= (f1 
 f2)(I � J):

The result then follows for general I , J since � is a preframe bihomomorphism. 2

We can interpret this lemma spatially. Recall that if g : X ! Y is a locale map
between compact Hausdor� locales then for any closed sublocale :I � X of X its
image under g (written g(:I)) is given by :8g(I). So the lemma could have been
stated: given g1 : X ! �X; g2 : Z ! �Z with X; �X;Y; Z; �Z compact Hausdor� then
for any closed relations :I � X � Y;:J � Y � Z

(g1 � g2)(:J Æ :I) = ((1� g2)(:J)) Æ ((g1 � 1)(:I))

(Take f1 = 8g1 and f2 = 8g2 in the lemma.)

4.3 Axioms on relations

We would like to use our relational composition on compact Hausdor� locales in
order to capture well known spatial ideas about sets and relations. Often when
looking at the upper closure of a subset with respect to some relation R we are
interested in the cases when R is a preorder, or a partial order, or transitive, or
interpolative etc. These axioms can be expressed using relational composition:

R reexive , � � R

R transitive , R ÆR � R

R interpolative , R � R ÆR

R antisymmetric , R \ �R � �
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where � is the diagonal on X and � is the twist isomorphism X �X ! X �X .
The localic version of the above is clear: if X is a compact Hausdor� locale and R
is a closed sublocale of X �X then we say

R reexive , � � R

R transitive , R ÆR � R

R interpolative , R � R ÆR

R antisymmetric , R ^ �R � �:

Where � is the inclusion of closed sublocales and � : X � X �X is the (closed)
diagonal. It is important to realize how these axioms are going to be used in practice.
The diagonal is closed so,

� = :#� X �X

where # =
W"
f^i(aiObi)j ^i2I (ai _ bi) = 0; I �nite g. So if R = aOb then the

antisymmetric axiom is the statement that for every collection (ai; bi)i2I (I �nite)
with ^i2I (ai _ bi) = 0 we have

^i(aiObi) � (aOb) _ (bOa)

The order reverses since :a �Sub(X) :b if and only if b � a for any a; b 2 
X .

Say R is some relation on a set X (so R is a subset of X �X), then given any
subset �X of X we often want to look at the `upper closure' of �X with respect to R.
i.e. the set

fx 2 X j9y 2 �X yRxg (*)

Now X �= 1 �X and so PX �= P (1 �X). It is easy to see that the set (*) is the
image under this last correspondence of the relational composition of R � X �X

and f(�; x)jx 2 �Xg � 1 � X (1 = f�g). i.e. upper closure can be expressed via
relational composition.
Say R is some closed relation on a compact Hausdor� locale X , and �X is some
closed sublocale of X (so �X � X = :a � X for some a 2 
X) then we can
de�ne an R-upper closure of �X. Similarly to the discrete case just described closed
sublocales of 1�X are in bijective correspondence with closed sublocales of X . But
1� �X is a closed sublocale of 1�X , and so we take its relational composition with
R� X �X and then transform the sublocale of 1�X that we get to a sublocale
of X . This de�nes the R-upper closure of �X. Symbolically the R-upper closure of
�X is

�2(R Æ (1� �X))

(Recall �2 : 1�X ! X is an isomorphism.)

Symmetrically we can de�ne the lower closure of a closed sublocale with respect
to a closed relation.

We can also de�ne the R-lower closure of a subset �Y of some set Y if R is a
relation on X � Y where Y is some other set. We are referring to the set

fx 2 X j9y 2 �Y xRyg

Given a closed relation R� X � Y where X;Y are compact Hausdor� locales and
given �Y a closed sublocale of Y we de�ne the R-lower closure of �Y to be the closed
sublocale given by
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�Y ÆR

This is, of course, an abuse of notation. �Y is not a relation and the result of �Y ÆR
is not a closed sublocale, it is a closed relation. We are assuming that the relational
composition Æ is performed on �Y �1� Y �1, and that the result is composed with
the isomorphism �1 in order to obtain a sublocale of X .
This notion of R-lower closure with respect to some closed relation R on compact
Hausdor� locales X;Y gives rise to a preframe morphism  R : 
Y ! 
X . The
procedure for de�ning  R is: take b 2 
Y then de�ne  R by : Rb = the lower
closure of :b. We use the notation R = :aR � X �X in order to talk about the
element of 
(X)
 
(X) corresponding to R. We can use the � function to de�ne
 R:

 R : b 7�! aR � b

N.B. this is an abuse of notation. � cannot take b as one of its arguments, so really
we are looking at the function

b 7�! (
�1)
�1(aR � (bO0))

Where


�1 : 
X �! 
X 



is the isomorphism a 7! aO0. It is clear from the de�nition of � that  R is a pre-
frame homomorphism.

Moreover the assignment aR 7!  R from 
X 
 
Y to PreFrm(
Y;
X) is a
preframe homomorphism. We aim to show that it is an isomorphism. Say we are
given a preframe homomorphism  : 
Y ! 
X we can de�ne a closed sublocale
R = :a � X � Y by

a = ( 
 1)(#)

Theorem 4.3.1 If X;Y are compact Hausdor� locales then

PreFrm(
Y;
X) �= 
X 

Y

as preframes.

Before the proof we need a technical lemma.

Lemma 4.3.1 For any I 2 
X 
 
Y (X;Y compact Hausdor�) the preframe

homomorphism


Y 

Y �! 
X 

Y

J 7�! I � J

can be factored as


Y 

Y

�1 
 1- 
Y 



Y

(I � ( ))
 1- 
X 
 


Y
(
�1)

�1 
 1- 
X 
 
Y

Proof: We need to check for any J 2 
Y 

Y that

I � J = ((
�1)
�1 
 1)((I � ( ))
 1)(
�1 
 1)(J)
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As in technical Lemma [4.2.1] it is clearly suÆcient to check the cases J = b1Ob2
I = aOb.
But then

LHS = (aOb) � (b1Ob2)

=

"_
(faOb2g [ f1j1 � b1 _ bg)

RHS = ((
�1)
�1

 1)((aOb � ( ))
 1)(b1O0Ob2)

= ((
�1)
�1

 1)([(aOb) � (b1O0)]Ob2)

= ((
�1)
�1

 1)(

"_
(faO0g [ f1j1 � b _ b1g)Ob2)

= ((
�1)
�1

 1)

"_
(faO0Ob2g [ f1j1 � b1 _ b2g)

=

"_
(f((
�1)

�1

 1)(aO0Ob2)g [ f1j1 � b1 _ bg)

=

"_
(faOb2g [ f1j1 � b1 _ bg) 2

Proof of Theorem [4.3.1] De�ne

� : PreFrm(
Y;
X) �! 
X 

Y

 7�! ( 
 1)(#)

� : 
X 

Y �! PreFrm(
Y;
X)

I 7�! (b 7! (
�1)
�1(I � (bO0)))

We need to check � Æ � = id and � Æ � = id.

But (�(I)
 1) = ((
�1)
�1
 1)((I � ( ))
 1)(
�1
 1) by the de�nition of �. Hence

(�(I) 
 1)(J) = I � J for every J 2 
Y 
 
Y by the last lemma. It follows that
(�(I)
1)(#) = I �#. But I �# = I since the diagonal is the identity for relational
composition. Hence � Æ � = id.

On the other hand for any a 2 
Y (and any  2 PreFrm(
Y;
X))

[(� Æ �)( )](a) = [�(( 
 1)(#))](a)

= (
�1)
�1(( 
 1)(#) � (aO0))

= (
�1)
�1(( 
 1)(#) � (1
 1)(aO0))

= (
�1)
�1( 
 1)(# � (aO0)) by Lemma [4.2.1] with f1 =  ; f2 = 1

= (
�1)
�1(( 
 1)(aO0))

= (
�1)
�1( (a)O0)

=  (a) 2

As an immediate corollary notice that a relation R ,! X�X is reexive if and only
if

 R(a) � a 8a 2 
X

The proof of Theorem [4.3.1] shows that there is an order reversing bijective cor-
respondence between the closed relations on two compact Hausdor� locales X;Y
and preframe homomorphisms from 
Y to 
X . By looking at the SUP-lattice
description of locales the above can be translated into a proof of
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Theorem 4.3.2 If X;Y are discrete locales then

SUP(
Y;
X) �= 
X 
 
Y

as SUP-lattices.

Proof: As stated in the preamble we can repeat the above proof (of Theorem
[4.3.1]) with SUP-lattice tensor in place of preframe tensor. However we know that
the category of discrete locales is equivalent to the category of sets (=the back-
ground topos) and so we can o�er a much more straightforward proof of this result.
All we need to do is check that there is a one to one correspondence between the
relations on two sets X;Y and SUP-lattice homomorphisms going from PY to PX .
This is an elementary exercise. 2

The last theorem and its proper analogue (Theorem [4.3.1]) can both be writ-
ten as categorical equivalences. KHausLoc is the category of compact Hausdor�
locales. We use

KHausLocU

to denote the opposite of the category whose objects are the frames of opens of
compact Hausdor� locales and whose maps are preframe homomorphisms. The
open parallel is the category

DisLocL

which is the opposite of the category whose objects are powers sets of sets (i.e. the
frames of opens of discrete locales) and whose morphisms are SUP-lattice homo-
morphisms.

Theorem 4.3.3

KHausLocU �= KHausRel

DisLocL �= Rel

Proof: We prove the proper parallel only. The problem is to check that relational
composition is taken to function composition of the corresponding preframe maps.
(For then since � and � are inverse to each other it will follow that � takes function
composition to relational composition in an appropriate way.) Clearly it is suÆcient
to prove that

�(I � J) = �(I) Æ �(J)

for all I 2 
(X � Y ); J 2 
(Y � Z). But if c 2 
Z then

�(I � J)(c) = (
�1)
�1(I � J � (cO0))

(recall that � is associative). But

[�(I) Æ �(J)](c) = �(I)[(
�1)
�1(J � (cO0))]

= (
�1)
�1(I � [(
�1)

�1(J � (cO0))O0])

But b 7! bO0 is 
�1 : 
Y ! 
Y 
 
 and so [((
�1)
�1K)O0] = K for every

K 2 
Y 

.
Hence

[�(I) Æ �(J)](c) = (
�1)
�1(I � J � (cO0)) 2
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Corollary 4.3.1 (KHausLoc)U and (DisLoc)L are both self dual.

Proof: This result follows from the fact that KHausRel and Rel are both self
dual. Their dualizing functor is e�ectively given by the twist isomorphism on the
product of locales: �X;Y : X � Y �! Y � X . So a morphism (:I ,! X � Y ) of
KHausRel is mapped to the morphism

:I ,! X � Y
�
�! Y �X

of KHausRelop. 2

We now �x some notation that will be used in the �nal three chapters. Say
R ,! X �X is a closed relation on a compact Hausdor� locale X .
Then R = :aR; aR 2 
X 
 
X . The lower closure of closed sublocales is the
function:

+: CSub(X) �! CSub(X)

:a 7�! :a ÆR

(where CSub(X)=the closed sublocales of X). The upper closure is the function:

*: CSub(X) �! CSub(X)

:a 7�! R Æ :a

But in practice (i.e. when it comes to algebraic manipulations) we are interested in
the corresponding preframe homomorphisms.

+op: 
X ! 
X

is the unique preframe homomorphism such that

+ :a = : +op a 8a 2 
X

and

*op: 
X ! 
X

is the unique preframe homomorphism such that

* :a = : *op a 8a 2 
X .

We choose the `op' since CSub(X) �= 
Xop and so + is e�ectively a function from


Xop to 
Xop. +op is the same function but acting on (and going to) the opposite
poset. So the analogy is with categorical notation: if F : C ! D is a functor be-
tween categories then F op : Cop ! Dop is the same functor but with the arrows of
the domain and codomain formally reversed.

We can now write out some implications of Theorem [4.3.1] applied to the case
X = Y : if R is a relation on X then we know

aR = (+op 
1)(#).

But because of the duality referred to in the last corollary we see that

aR = (1
 *op)(#)

as well. Of course the general conclusion is that for any relation R ,! X � Y not
only aR = ( R 
 1)(#) but also

aR = (1
 �R)(#)
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where �R : 
X ! 
Y is given by �R(a) = (
�2)
�1((0Oa) � aR).

We can also use the fact that relational composition corresponds to function com-
position to make the following conclusions: a relation R ,! X �X is

transitive , +
op (a) �+op Æ +op (a) 8a 2 
X

interpolative , +
op
Æ +

op (a) �+op (a) 8a 2 
X

reexive , +
op (a) � a 8a 2 
X:

4.4 Notes

For the reader who knows what the upper/lower power locale monad is, note that
the equivalences of Theorem [4.3.3] are saying that the allegory is equal to the
full subcategory of the Kleisli category of the monad, consisting of all compact
Hausdor�/discrete locales. Also, notice that the corollaries

Corollary 4.4.1 PU (X) �= $X for all compact Hausdor� X

Corollary 4.4.2 PL(X) �= $X for all discrete X

(which appear in [Vic94]) can easily be derived from Theorems [4.3.1] and [4.3.2]
respectively.

Much more can be said about these monads (e.g. a discussion of the constructive
points of the power locales). Most interestingly we see in [Vic95] that it might be
possible to use them to formalize what is meant by our expression `parallel'.
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Chapter 5

Ordered Locales

5.1 Spatial Intuitions

We begin the chapter by repeating some well known facts about ordered topological
spaces, noting that the results we examine do not require the antisymmetry axiom

for the order �. We then prove some new theorems which show that these results
become more straightforward localically.
The topological exposition is based on the beginning of Chapter VII in [Joh82].
We are looking at classical topological space theory in order to inspire a constructive
localic treatment to follow and so are free to use the excluded middle at this point.

Lemma 5.1.1 Assume the excluded middle. Given a topological space X with a

preorder � on it, then � is closed i� 8x; y 2 X x 6� y implies

9U; V � X s.t. x 2 intU; y 2 intV; U \ V = �; " U = U; # V = V

Proof: ()) If � is closed and x 6� y then 9U1; V1 open such that U1�V1\(�) = �.

Take U =" U1; V =# V1. The reverse implication is equally straight forward. 2

Lemma 5.1.2 Assume the excluded middle. If (X;�) is a preordered topological

space with � closed, and if K � X is compact then # K; " K are closed.

Proof: Say x 2 X� # K then for every k 2 K x 6� k and so by the lemma above
9Uk upper closed and Vk lower closed s.t. (x; k) 2 intUk � intVk and Uk \ Vk = �.
Clearly then K � [ni=1Vki for some n and since [Vki is lower closed # K � [Vki .
Also since Uki \ Vki = � 8i we see that \iUki is a neighbourhood of x disjoint
from # K hence # K is closed. " K is shown to be closed by a similar argument. 2
Notice that the above shows us that if the preordered topological space is compact
Hausdor� then the upper(lower) closure of closed subspaces is closed (provided the
preorder is closed). The localic analogy here is clear: if we are assuming X is a
compact Hausdor� locale it is a matter of de�nition that relational composition
takes closeds to closeds (provided the relation is closed).

Corollary 5.1.1 Assume the excluded middle. If (X;�) is a compact Hausdor�

topological space with a closed preorder � then whenever x 6� y we can �nd disjoint

opens U and V such that U is upper closed and V is lower closed and (x; y) 2 U�V .

107
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Proof:" x and # y are closed (by the lemma since fxg and fyg are compact) and
" x\ # y = �. Hence since compact Hausdor� spaces are normal we know that 9
disjoint opens U1; V1 such that " x � U1; # y � V1. Take

U = X� # (X � U1) (� U1)

V = X� " (X � V1) (� V1) 2

This last corollary may be written

6��
S
fU � V j U \ V = � " U = U # V = V U; V openg

The opposite inclusion is trivial so we have the equation

6�=
S
fU � V j U \ V = � " U = U # V = V U; V openg

for any compact Hausdor� topological space X . Recall that classically a set is upper
closed i� its complement is lower closed. So we guess that the condition " U = U

can be safely translated to the localic condition

+ :U =Sub(X) :U

where + is the lower closure operation corresponding to the relation �.
The reasoning behind the localic form of the above corollary should now be clear:

Theorem 5.1.1 If X is a compact Hausdor� locale and � is a closed preorder on

it (i.e. (�) Æ (�) � (�) and � � (�)) then

a� =
W
fa
 bj a ^ b = 0 +op a = a *op b = bg

where �= :(a�).

Recall from the end of the last chapter that +op is the preframe homomorphism
from 
X to 
X which corresponds to the closed relation �, and *op is the preframe
homomorphism from 
X to 
X corresponding to the closed relation �. We saw
that

a� = (+op 
1)(#)

and noticed that the symmetrical result is true:

a� = (1
 *op)(#).

Proof of Theorem:

First note that for any open a of our compact Hausdor� locale X we have that

*op a � a and +op a � a

This is simply a reection of the fact that � is postulated to be reexive.
Now (�) Æ (�) � (�) means

a� � a� � a�

= (+op 
1)(#) � (1
 *op)(#)

= (+op 
 *
op)(# �#) Lemma [4.2.1]

= (+op 
 *
op)(#)

= (+op 
 *
op)(_"f^iaiObij ^i (ai _ bi) = 0g)

= (_"f^i(+
op aiO *

op bi)j ^i (ai _ bi) = 0g

= _f+
op a
 *op bja ^ b = 0g

� _f�a
 �bj�a ^ �b = 0 +
op �a = �a *

op �b = �bg
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The proof behind the penultimate line is a simple reworking of the proof that
_"f^i(aiObi)j ^i (ai _ bi) = 0g = _fa 
 bja ^ b = 0g (see end of Lemma [2.7.1])
and the last line follows since (i) +op a^ *op b � a ^ b and (ii) *op;+op are both
idempotent since the relation is a preorder.
As for the `easier' way round, say we are given a; b with +op a = a;*op b = b and
a ^ b = 0. Recall a� = (+op 
1)(#). (I could have chosen a� = (1
 *op)(#) and
followed an obvious parallel route.) So

a
 b = (+op a)
 b

= (+op a)O0 ^ 0Ob

� (+op a)O0 ^ (+op 0Ob)

= (+op 
1)(aO0) ^ (+op 
1)(0Ob)

= (+op 
1)(a
 b) � (+op 
1)(#) = a� 2

This last result can be stated as a `preframe fact' as well: along the way we saw
that

a� =
W"
f^i(+

op aiO *
op bi)j ^i (ai _ bi) = 0g.

In fact the lemma can be stated and proved more easily as,

Lemma 5.1.3 If (X;�) is a compact Hausdor� locale with a closed preorder then:

a� =
W"
f^i(aiObi)j +

op ai = ai;*
op bi = bi;^i(ai _ bi) = 0g

Notice that the proof to follow is a lot simpler than our last proof since we don't
have to worry about translating the conclusion from its preframe form to its SUP-
lattice form.
Proof:

a� = a� � a�

= (+op 
1)(#) � (1
 *op)(#)

= (+op 
 *
op)(#) from Lemma [4.2.1]

= _
"
f^i(+

op aiO *
op bi)j ^i (ai _ bi) = 0g

� _
"
f^i(�aiO�bi)j +

op �ai = �ai;*
op �bi = bi;^i(�ai _ �bi) = 0g

In the other direction say we have a �nite collection (ai; bi)i2I such that +op ai = ai
for all i, *op bi = bi for all i and ^i(ai _ bi) = 0. Then

^i(aiObi) = ^i(+
op aiObi)

= (+op 
1)(^i(aiObi))

� (+op 
1)(#) = a� 2

Theorem 5.1.2 (Nac65) Assume the excluded middle. Let (X;�) be a compact

Hausdor� topological space with a closed partial order. Then the sets of the form

U \ V where U is an open upper set and V is an open lower set, form a base for

the topology on X.

Proof: Say W � X is an open subset of X . Then 8x 2 W we need to �nd open
sets U; V such that x 2 U \V �W , " U = U and # V = V . Say y 62W Then x 6= y

and so either x 6� y or y 6� x.
If x 6� y then there exists opens Uy; Vy such that Uy upper, Vy lower, x 2 Uy, y 2 Vy
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and Uy \ Vy = �.
If y 6� x then there exists opens Uy; Vy such that Uy lower, Vy upper, x 2 Uy, y 2 Vy
and Uy \ Vy = �.
Thus W c �

S
y2W c Vy and so, since W c is closed and thus compact,

W c �
S
i2I Vyi

for some �nite I . Hence
T
i2I Uyi �W and x 2

T
i2I Uyi . 2

The localic version of this theorem is an easy corollary to the work that has already
been done. Its proof, unsurprisingly, requires the antisymmetry axiom on the order
�.

Theorem 5.1.3 (X;�) is such that X is a compact Hausdor� locale and � is a

closed partial order (i.e. � � (�); (�) Æ (�) � (�); (�) _ (�) � �) then every

c 2 
X is the join of elements of the form a ^ b where :a is a lower closed closed

sublocale of X and :b is an upper closed closed sublocale of X.

Proof: Notice that the problem is equivalent to checking that the subframe of 
X
generated by the set,

faj *op a = ag [ faj +op a = ag

is the whole of 
X .
� is antisymmetric and reexive. So (�)_ (�) = �. i.e. a� _a� = #. But for any
a 2 
X , a = # � a and so a = (a� _ a�) � a. Now in the last lemma ([5.1.3]) we
saw that if � is a closed preorder on a compact Hausdor� X then

a� =
W"
f^i(+

op ai& *op bi)j ^i (ai _ bi) = 0g

Thus

a� =
W"
f^i(*

op bi& +op ai)j ^i (ai _ bi) = 0g

Hence a� _ a� is a directed join of meets of elements of the form

(+op a_ *op b)&(*op d_ +op e)

and so a = [(a� _ a�) � a] is a directed join of meets of elements of the form:

(+op a_ *op b) _ 
!(1 �*op d_ +op e _ a)

Since 1 certainly belongs to faj *op a = ag [ faj +op a = ag and

!(1 �*op d_ +op e_a) =

W
f1j1 �*op d_ +op e_ag we can now easily see that the

frame generated by this set is the whole of 
X . 2

5.2 Compactness result

There is a technical lemma which will be needed later on. It bears a similarity to
the result (1
 *op)(#) = (+op 
1)(#) that has proved useful so far.

Lemma 5.2.1 Say R ,! X � Y is a closed relation on compact Hausdor� X;Y .

If  R : 
Y ! 
X is the preframe homomorphism corresponding to R and �R :

X ! 
Y is the preframe homomorphism corresponding to �R then if b 2 
Y and

a 2 
X we have
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1 �  R(b) _ a , 1 � b _ �R(a)

Proof: If aR =
W"
j ^ia

j
i&b

j
i then the LHS of the implication is:

1 � (
W"
j ^i[a

j
i _ 
!(1 � b _ b

j
i )]) _ a

, 1 �
W"
j ^i[a _ a

j
i _ 
!(1 � b _ b

j
i )]

, (9j)(8i)[1 � (a _ a
j
i ) _
!(1 � b _ b

j
i )]

where the last line is by compactness and the de�nition of meet.
But for any compact locale Z with �; � 2 
Z we must have

1 � � _ 
!(1 � �) , 1 � � _
!(1 � �)

since � _ 
!(1 � �) =
W"

(f�g [ f1j1 � �g).
So we conclude that 1 �  Rb _ a , (9j)(8i)[1 � (b _ bji ) _ 
!(1 � a _ a

j
i )]

But 1 � b _ �R(a) is just the statement:

1 � [
W"
j ^i(b

j
i _ 
!(1 � a _ a

j
i ))] _ b

which as above (via compactness of X) translates to,

(9j)(8i)[1 � (b _ bji ) _ 
!(1 � a _ a
j
i )] 2

As a corollary note that if R is a closed relation on some compact Hausdor� locale
X and b; a 2 
X then

1 �+op b _ a , 1 � b_ *op a.

5.3 Order preserving locale maps

We now turn to the de�nition of morphism between ordered locales. We �nd again
that it is appropriate to de�ne something by analogy to our spatial intuition. A map
f : X ! Y where X;Y are two ordered spaces is a morphism of the category of
ordered spaces if and only if it is continuous and preserves order. An ordered
locale is a locale with a sublocale of the product of the locale with itself. So
if (X;RX); (Y;RY ) are two ordered locales then a locale map f : X ! Y is a
morphism of the category of ordered locales if and only if there exists a locale map
n : RX ! RY such that

RX
n - RY

X �X
?

\

f � f- Y � Y
?

\

commutes.
For closed RX ; RY it is easy to check that the above diagram can be de�ned and
commutes if and only if


(f � f)(aRY ) � aRX

Of course we are not going to investigate things at this level of generality. We are
only interested the case when the locales are compact Hausdor� and the relations
are closed partial orders. We shall call such ordered locales compact Hausdor�
posets. The notation (X;�X) will be used to denote such posets. Say f : X ! Y

is a locale map and (X;�X); (Y;�Y ) are two compact Hausdor� posets. Then f is
a map in the category of ordered locales if and only if
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(f � f)(a�Y ) � a�X (�)

We now translate this condition further.
Assume (�) holds. Then if we a are given a 2 
Y (and a�Y =

W"
j (^i(a

j
iOb

j
i )) then


f +op a = 
f(a�Y � (aO0))

=

"_

j

^i(
fa
j
i _ 
!(1 � b

j
i _ a))

But 
!(1 � b
j
i _ a) � 
!(1 � 
fbji _ 
fa) and so


f +op a �

"_

j

^i(
fa
j
i _ 
!(1 � 
fb

j
i _ 
fa))

= [(
f 

f)(a�Y )] � (
faO0)

� a�X � (
faO0)

= +
op 
fa

Hence 
f +op a �+op 
fa for all a 2 
Y if we assume (�).
For the converse assume 
f +op a �+op 
fa 8a 2 
Y , and recall that since
(Y;�Y ) is a compact Hausdor� poset we know (Lemma [5.1.3]) that

a�Y =
W"
f^iaiObij ^i (ai _ bi) = 0;+op ai = ai;*

op bi = big.

So 
(f � f)a�Y =
W"
f^i
faiO
fbij ^i (ai _ bi) = 0;+op ai = ai;*

op bi = big

But for any �nite collection of ai; bis satisfying ^i(ai _ bi) = 0 and +op ai = ai;

*op bi = bi we have


fai = 
f +op ai �+
op 
fai � 
fai

by reexivity of �X and assumption. Similarly 
fbi =+
op 
fbi.

Clearly ^i(ai _ bi) = 0 ) ^i(
fai _
fbi) = 0, and so


(f � f)(a�Y ) �

"_
f^iaiObij ^i (ai _ bi) = 0;+op ai = ai;*

op bi = big

= a�X

So we have translated the condition (�) to


fÆ +op�+op Æ
f

Notice, incidentally, that exactly the same proof shows us that (�) is equivalent to


fÆ *op�*op Æ
f

We can now de�ne the category KHausPos: its objects are compact Hausdor�
posets and its maps are order preserving locale maps.



5.4. COMPACT REGULAR BIFRAMES 113

5.4 Compact Regular Biframes

The compact regular biframes were introduced by Banaschewski, Br�ummer and
Hardie in [BBH83]. Spatially they are the compact regular T0 bispaces and have
been related to the stably locally compact locales ([BB88]). We shall investigate
this relation extensively in the last chapter. For the moment we prove a new result:
the compact regular biframes are dually equivalent to the compact Hausdor� posets.

The objects of KR2Frm (the category of compact regular biframes) are triples
(L0; L1; L2) such that L0 is a compact frame and L1; L2 are two subframes of
L0 which generate the whole of L0 and are required to satisfy two regularity-like
conditions:
(i) 8a 2 L1 a =

W"
fcjc 2 L1 c �1 ag where

c �1 a , 9d 2 L2 c ^ d = 0 a _ d = 1
(ii) 8a 2 L2 a =

W"
fcjc 2 L2 c �2 ag where

c �2 a , 9d 2 L1 c ^ d = 0 a _ d = 1
It follows, since L1; L2 generate the whole of L0, that if (L0; L1; L2) is a compact
regular biframe then L0 is the frame of opens of a compact regular locale. So
L0 = 
X for some compact Hausdor� locale X .
If (L0; L1; L2); (L0

0; L1
0; L2

0) are two objects ofKR2Frm then morphisms are given
by frame homomorphisms l : L0 ! L0

0 which satisfy:

l(a1) 2 L1
0
8a1 2 L1

l(a2) 2 L2
0
8a2 2 L2

Theorem 5.4.1 KR2Frm �= KHausPos

Proof: Although the proof is quite straightforward it is not short.

We �rst construct a contravariant functor from KR2Frm to KHausPos. Let us
assume we are given a compact regular biframe (L0; L1; L2). We can de�ne a couple
of preframe endomorphisms on L0: for i = 1; 2 set

�i(a) =
W"
fcjc 2 Li c �i ag

That �i preserves �nite meets is straightforward. (Recall that L1; L2 are subframes
of L0, so certainly �i(1) = 1 for i = 1; 2.) Compactness of L0 shows that �1; �2 are
preframe endomorphisms. The conditions (i) and (ii) in the de�nition of compact
regular biframe given above tell us that the images of �1; �2 are exactly L1; L2 re-
spectively. Notice b 2 Li if and only if �i(b) = b. It follows that �i is idempotent.

Bearing in mind the correspondence between preframe endomorphisms and closed

relations, as worked out in Theorem [4.3.1], we de�ne our compact Hausdor� poset
(X;�) from (L0; L1; L2) as follows:


X = L0

a� = (�1 
 1)(#)

Reexivity and transitivity of � follows immediately since �1(b) � b 8b 2 L0 and
�1 is idempotent.
In fact
(�) a� = (1
 �2)(#)
(�) a� _ a� � #
i.e. (�): we haven't `lost' any information by picking �1 over �2 in our de�nition of
(X;�) and (�): � is antisymmetric and therefore is a partial order.
Proof of (�) We want,
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(�1 
 1)(#) = (1
 �2)(#).

We prove that

(�1 
 1)(#) � (1
 �2)(#)

and appeal to the symmetry between �1; �2 for the full result.
Now :(1 
 �2)(#) is a closed sublocale of X � X and so gives rise to a unique
preframe endomorphism of 
X by:

a 7�! (1
 �2)(#) � a

It follows that if we can prove

�1(a) � (1
 �2)(#) � a

for every a 2 
X then we can conclude

(�1 
 1)(#) � (1
 �2)(#)

since :(�1 
 1)(#) is the closed sublocale corresponding to the preframe endomor-
phism �1.
But

(1
 �2)(#) � a =
W"
f^i[ai _ 
!(1 � (�2(bi) _ a))]j ^i (ai _ bi) = 0g

and

�1(a) =
W
fcjc �1 a c 2 L1g.

Now if c �1 a then 9d 2 L2 such that c ^ d = 0 and d _ a = 1. So �2(d) = d. If we
take (a1; b1) = (c; 0) and (a2; b2) = (0; d) and I = f1; 2g then ^i2I (ai _ bi) = 0. But
for these ais and bis we see

^i[ai _ 
!(1 � (�2(bi) _ a))]

= [c _
!(1 � �2(0) _ a)] ^ 
![1 � (�2(d) _ a)]

� c since �2(d) = d and d _ a = 1:

Hence

�1(a) � (1
 �2)(#) � a

and so we may conclude that �2 is the preframe homomorphism corresponding to
upper closure as outlined above. 2
Proof of (�) Recall that L1; L2 are subframes of L0 which generate the whole of
L0 (by the de�nition of compact regular biframe). We have observed that:

a 2 L1 , �1(a) = a

a 2 L2 , �2(a) = a

(This is really just a restatement of the regularity-like conditions (i), (ii).) So the
fact that L1; L2 generate L0 lets us write:

a =
W"
fb ^ cj�1(b) = b; �2(c) = c; b ^ c � ag

for any a 2 L0.
But a� = (�1
1)(#) (de�nition), and a� = (1
�2)(#) (�). And so by applying the
twist isomorphism on X �X to the second of these we see that: a� = (�2 
 1)(#).
Thus
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�1 =+
op and �2 =*

op.

So �1(b) = b , +op b = b , a� � b = b

and �2(c) = c , *op c = c , a� � c = c.
We want to prove (a� _ a�) � #. We know from our equivalence between closed
sublocales on X � X and preframe endomorphisms of 
X that it is suÆcient to
prove

# � a � (a� _ a�) � a 8a 2 L0
i.e. a � (a� _ a�) � a 8a 2 L0

Now say b satis�es �1(b) = b. Then

b = (a� � b) � (a� _ a�) � b

and if c satis�es �2(c) = c then

c = (a� � c) � (a� _ a�) � c.

Hence for any such b; c with b ^ c � a we have

b ^ c � ((a� _ a�) � b) ^ ((a� _ a�) � c)

= (a� _ a�) � (b ^ c) (because � is a bipreframehomomorphism)

� (a� _ a�) � a:

But a =
W
fb ^ cj�1(b) = b; �2(c) = c; b ^ c � ag since L0 is generated by L1; L2

and so a � (a� _ a�) � a as required. 2

Recall that

f : (X;�X)! (Y;�Y )

is a morphism of KHausPos i� there exists a locale map n :�X�!�Y such that

�X
n - �Y

X �X
?

\

f � f- Y � Y
?

\

commutes. We saw in the last section that this condition is equivalent to:


f Æ Y +op � X
+
op
Æ
f

If l is a compact regular biframe map from (L0; L1; L2) to (L0
0; L1

0L2
0) certainly

there exists

f : X ! Y

a locale map where 
X = L0
0; 
Y = L0 and 
f = l. The order on X (as

constructed above) corresponds to the preframe homomorphism �X1 : 
X ! 
X .
But

l�Y1 (a) � �X1 l(a)

since

c �1 a ) l(c) �1 l(a)
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as l(c) 2 L1
0 if c 2 L1 and l(d) 2 L2

0 if d 2 L2. So f is a map in the cate-
gory KHausPos and we have de�ned a contravariant functor from KR2Frm to
KHausPos.

Now on the other hand say we are given a Hausdor� poset (X;�).
We know that

a� = (1
 *op)(#)
a� = (+op 
1)(#)

where +op;*op are the preframe endomorphism whose actions are the lower/upper
closure of closed sublocales. Thus we have preframe endomorphisms of 
X . Since
� is reexive we know that *op a � a 8a 2 
X and +op a � a 8a 2 
X , and so
the sets

faj +op a = ag � 
X

faj *op a = ag � 
X

are not only subpreframes but are subframes of the compact frame 
X . Do they
generate the whole of 
X ? The answer is yes; we saw exactly this fact in the proof
of Theorem [5.1.3].

So if we set L0 = 
X and L1 = faj +op a = ag; L2 = faj *op a = ag then L0 (is
compact and) is generated by these two subframes.
We are now in a position to check the regularity-like condition (i) for (L0; L1; L2)
((ii) will clearly follow by symmetry from this).

(i) states that if a 2 L1 � faj +
op a = ag then

a =
W
fcjc �1 a +op c = cg

where c �1 a , 9d with *op d = d; d^ c = 0 and a_ d = 1. But we know by
regularity of X that +op a = a =

W"
fbjb� ag and by taking +op of both sides we

see a =
W"
f+op bjb� ag, and so to check (i) all we need do is check

b� a ) +op b �1 a

Now if b� a then there exists d with 1 � a _ d and b ^ d = 0. But a =+op a and so
+op a _ d = 1 letting us conclude a_ *op d = 1 by the compactness result, Lemma
[5.2.1].
Also *op d � d and +op b � b (reexivity of � ): thus +op b^ *op d = 0, and since
*op d 2 L2 we may conclude +op b �1 a.

Thus (
X; faj +op a = ag; faj *op a = ag) is a compact regular biframe for any
compact Hausdor� poset (X;�).
As for morphisms, say f : (X;�)! (Y;�) is a map of KHausPos then as well as
the condition


f +op�+op 
f

recall that we noted in the last section that the symmetric condition


f *op�*op 
f

is implied by (and implies) the assumption `f is a KHausPos map'. Hence
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f : (
Y; fbj +op b = bg; fbj *op b = bg) �! (
X; faj +op a = ag; faj *op a = ag)

is a map of KR2Frm and so we have a contravariant functor (C) from compact
Hausdor� posets to compact regular biframes.

Now say (L0; L1; L2) � C(X;�). Near the beginning of this proof we de�ned for
any compact regular biframe a preframe endomorphism �i by

b 7!
W"
faja 2 Li a �i bg

I claim that since L1 = faj +op a = ag then

W"
faja 2 L1 a �1 bg =+

op b

Certainly �1(b) �+
op b for if a �1 b; a 2 L1 then a � b and so

a =+op a �+op b:

In the other direction: 8b 2 L0 = 
X

+op b =
W"
faja� +op bg

and so by applying +op to both sides we get

+op b =
W"
f+op aja� +op bg

and we know from above a� +op b implies +op a �1+
op b. Thus +op a �1 b since

+op b � b.

Hence �1 =+
op, and so mapping (
X; faj +op a = ag; faj *op a = ag) to ( �X;� �X)

where 
 �X = 
X and � �X is the closed sublocale corresponding to the preframe en-
domorphism �1 returns us to (X;�).

Finally to check that KR2Frm and KHausPos are dually equivalent we need
to check, given a compact regular biframe (L0; L1; L2) that

(L0; L1; L2) = (L0; faj +
op a = ag; faj *op a = ag)

where +op comes from the closed relation � de�ned by

a� = (�1 
 1)(#):

Thus +op= �1 and so faj +op a = ag = L1 as required. (Recall that b 2 L1 i�
�1(b) = b .)
But we saw

a� = (�2 
 1)(#) � (�)

and so *op= �2 and, just as with �1, the �2 �xed elements of L0 are precisely the
elements of L2. 2

The classical version of this result was proved in Priestley's paper `Ordered Topo-
logical Spaces and the Representation of Distributive Lattices' [Pri72]. Proposition
10 of that paper is (e�ectively): `The compact order-Hausdor� topological spaces
are equivalent to the compact regular T0-bispaces'. It is shown in [BBH83] how to
prove that the compact regular biframes are equivalent to the compact regular T0-
bispaces assuming the prime ideal theorem, and in fact it is clear that the proof can
be repeated assuming the constructive prime ideal theorem. So in order to recover
the classical result we need to make sure that our compact Hausdor� posets are
classically equivalent to the compact order-Hausdor� topological spaces. We �nd
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that we only need to assume the constructive prime ideal theorem (CPIT). We've
shown that compact Hausdor� locales are, given this assumption, spatial and so it is
easy to check that they are then equivalent to the compact Hausdor� spaces (where
in this constructive context it is easiest to de�ne the compact Hausdor� spaces,
KHausSp, as those topological spaces whose frame of opens are compact regular).
To avoid the diÆculties that come from constructively discussing the closed sub-
sets of a topological space (such as the fact that arbitrary intersections of closeds
are not closed via the usual proof since we cannot assume that arbitrary intersec-
tions distribute over �nite unions), we use as motivation the classical result that
the subspace of a compact Hausdor� space is closed if and only if it is compact.
Hence we de�ne the order-Hausdor� topological spaces to be those pairs (X;�)
such that X is a compact Hausdor� space and �� X � X is a compact partial
order. Notice that if KHausSp �= KHausLoc then monomorphisms are going to
correspond to injections of points i.e. to subspaces. In other words sublocales in
KHausLoc correspond to compact subspaces in KHausSp assuming CPIT. But
does the notion of relational composition of compact sets of points correspond to
relational composition as we've de�ned it via a preframe homomorphism? To see
that it does we need to check that pullbacks and image factorisations of compact
Hausdor� topological spaces are (on points) constructed as in Set. We need

Lemma 5.4.1 Assuming CPIT, the forgetful functor from KHausSp to Set cre-

ates pullbacks.

Proof: If

X �Z Y - Y

X
? f - Z

g

?

is a pullback diagram in KHausLoc then pt(X �Z Y ) is isomorphic as a set to the
set of pairs of points p1 : 1! X , p2 : 1! Y such that fp1 = fp2. Hence

pt(X �Z Y ) - pt(Y )

pt(X)
? pt(f)- pt(Z)

pt(g)

?

is a pullback diagram in Set. The result follows since we are assuming CPIT and
so KHausSp �=KHausLoc. 2

The forgetful functor also creates image factorisations. The proof of this is com-
pletely straightforward since if f : X ! Y is a continuous map between compact
Hausdor� spaces then ff(x)jx 2 Xg can be endowed with a topology (the subspace
topology from Y ) which makes it into a compact Hausdor� topological space.

Thus if we recall the de�nition of relational composition in terms of pullback and
image factorization (as presented at the beginning of Chapter 4) then provided we
have KHausSp �= KHausLoc, we know that set theoretic relational composition
of compact subspaces is given by relational composition of closed sublocales. Hence,
assuming CPIT, the order-Hausdor� topological spaces are equivalent to the com-
pact Hausdor� posets.



Chapter 6

Localic Priestley Duality

6.1 Introduction

Priestley duality describes how the category of coherent spaces is equivalent to the
category of ordered Stone spaces. We de�ne ordered Stone locales (which classically
are just the ordered Stone spaces) and present a new theorem that shows that the
category of ordered Stone locales is equivalent to the category of coherent locales.
Preframe techniques are used to prove this result.

6.2 Ordered Stone locales

A Stone space is a compact Hausdor� topological space which is also coherent. If we
assume CPIT then we know that the category of Stone spaces is equivalent to the
category of Stone locales i.e. compact Hausdor� locales which are also coherent. The
frames of opens of such locales were seen (in Theorem [1.7.5]) to be exactly the ideal
completions of Boolean algebras. From this we conclude that the category of Stone
spaces is dual to the category of Boolean algebras. This is Stone's representation
theorem [Sto 36],[Sto37].
The equivalence between Stone locales and Boolean algebras is trivial, it is when
showing that Stone locales are equivalent to Stone spaces that we invoke a choice
axiom.
Working in a classical context Priestley ([Pri70]) introduced ordered Stone spaces
(also known as Priestley spaces). These are pairs (X;�) whereX is a compact space

and � is a partial order on X satisfying the requirement that for every x; y 2 X

with x 6� y there is a clopen upper set U containing x and not containing y. From
this data it is a classical exercise to prove that an ordered Stone space is a Stone
space. It is immediate that � must be a closed subspace of X � X , in fact the
condition on � above can be rewritten as the equation

6�=
S
fU 
 U cjU clopen " U = Ug

where " U is the upper closure of U with respect to the order �. Notice that we
could use this condition to prove that � is transitive. Also note that this condition
can be written

6�=
S
fU 
 UcjU clopen # Uc = Ucg

since classically a subset is upper closed i� its complement is lower closed. Finally
since we know that X is compact Hausdor� we may classically conclude that U is
clopen if and only if it is a compact open subset of X and so, since X is coherent,
U 2 
X �= Idl(K
X) is in K
X if and only if it is clopen.

119
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Given these classical observations it should be clear that the following is a reasonable
de�nition of an ordered Stone locale

De�nition: An ordered Stone locale is a pair (X;�) where X is a Stone locale (i.e.

X �= IdlBX for some Boolean algebra BX) and �� X � X is a closed partial
order satisfying

a� =
W
fa
:aja 2 BX ;+

op a = ag (!)

where �= :a� � X � X and +op: 
X ! 
X is the preframe endomorphism of

X corresponding to the action of taking the lower closure of closed sublocales.
Notation warning: We have a notation clash between Boolean algebra negation
(:) and `closed sublocale corresponding to the open a' (:a ,! X). However context
will eliminate any ambiguity.

The equation (!) is a SUP-lattice equation. It has a preframe equivalent which
will be useful:

a� =
W"
f^i(aiO:bi)j ^i2I (ai _ :bi) = 0 ai; bi 2 BX +op ai = ai;

+op bi = bi; I �nite g

Proving these two expressions to be the same requires the same manipulation
(demonstrated in Lemma [2.7.1]) that proves that the closure of the diagonal of
a locale can be expressed both as

:
W
fa
 bja ^ b = 0g

and

:
W"
f^iaiObij ^i (ai _ bi) = 0g

When it comes to the manipulations that follow we will �nd that the prefame version
of the equation (!) will be the one to apply.
Our �rst manipulation comes with a proof that if we are given a pair (X;R) such
that X is a Stone locale and R is a closed relation which satis�es (!) then R is
transitive. To see this proof note that if a 2 
X then +op a is given by the formula

W"
f^i(ai _ 
!(1 � :bi _ a))g

where the directed join is over sets fai; biji 2 Ig such that I is �nite, ais and bis
are in the Boolean algebra of compact opens of X and +op ai = ai , +

op bi = bi ,
^i(ai _ :bi) = 0. So +op+op a is equal to

+op
W"

^i[
W"

(faig [ f1j1 � :bi _ ag)] =
W"

^i
W"

(f+op aig [ f+
op 1j1 � :bi _ ag)

=
W"

^i
W"

(faig [ f1j1 � :bi _ ag) =+
op a.

Idempotency of +op is equivalent to idempotency of R with respect to relational
composition. Idempotency of R is enough to prove that R is transitive. Notice that
the condition (!) also implies that R is reexive.

The morphisms between ordered Stone spaces are taken to be the continuous
order preserving functions and so the category OStoneSp is de�ned. We take
OStoneLoc to be the full subcategory ofKHausPos whose objects are the ordered
Stone locales. Recall from Section 5.3 that it follows that

f : (X �X) �! (Y;�Y )

is a map of OStoneLoc if and only if f : X ! Y is a locale map and 8a 2 
Y


fÆ +op (a) �+op (a) Æ
f



6.3. PRIESTLEY'S DUALITY 121

6.3 Priestley's Duality

Priestley's initial result was proved in [Pri70] (though see [Pri94] for some more re-
cent thinking about the duality). It consisted of the statementDLatop �= OStoneSp;
hence the term `duality'. However we take the equivalence DLatop �= CohSp (i.e.
generalization of Stone representation) for granted since we are familiar with this
result as essentially the assertion that coherent locales are spatial. (`Essentially'
since we need to factor in the complication that the maps between coherent spaces
are those whose inverse images preserve compact opens i.e. localically the semi-
proper maps.) We view Priestley duality as the equivalence CohSp �= OStoneSp.
So the reader is warned that the word `duality' is not entirely appropriate. This
view of the duality is also taken in II 4 of [Joh82]. There the functor:

B : CohSp �! OStoneSp

(X;
) 7�! (X; `patch';�)

is de�ned. � is the specialization order on (X;
) and a base for the patch topology
is given by

fU \ V cjU; V compact openg

In the other direction we have

C : OStoneSp �! CohSp

(X;
;�) 7�! (X; fU jU 2 
; " U = Ug)

Lemma 6.3.1 Classically, fU jU 2 
; " U = Ug = IdlfU jU 2 K
; " U = Ug. i.e.

C(X;
;�) is coherent. 2

Priestley proved in [Pri70] that, provided we are free to use the prime ideal
theorem (PIT), these functors de�ne an equivalence. We now use the remarks in
the notes to Section II 4.9 of Stone Spaces [Joh82] to see how an assumption that
BC de�nes an equivalence allows us to conclude the PIT:
Let us assume that B; C de�ne an equivalence. We see straight away that if a
coherent space is T1 (i.e. if the specialization order � is equality) then it is Stone.
But T1ness can equivalently be de�ned as saying that all points are closed. For
any distributive lattice A the points of the associated coherent space are the prime
ideals and the closed points are the maximal ideals. Hence the statement of T1ness
is equivalent to the statement that the maximal and prime ideals coincide. So
assuming B; C de�ne an equivalence we know that a coherent space is T1 if and only
if it is Stone. Hence:

Lemma 6.3.2 (Nac49) A distributive lattice is Boolean if and only if all its prime

ideals are maximal. 2

It is not immediately obvious that this lemma implies PIT. It certainly proves
that any non-Boolean distributive lattice has a prime ideal. But any non-trivial
Boolean can be embedded into a non-trivial non-Boolean distributive lattice and so
we have PIT. To see how to construct such an embedding consult Exercise I 4.8 of
Stone Spaces ([Joh82]).

Of course it is unfortunate that the above proof relies on the excluded middle.
The reason why we repeat this characterization of PIT is to make it clear that we
cannot hope to prove Priestley's duality without some choice axioms. i.e. we have
to move to something like locales if we want to have a constructive theory of spaces
that admits a Priestley duality.
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6.4 Localic Version

We de�ne an equivalence of categories via the functors B; C:

CohLoc
B-�
C

OStoneLoc

The idea behind the construction of B comes from the following classical reasoning:
if x 6� y where x; y are points of a coherent space X and � is the specialization
order then there exists a compact open U such that x 2 U and y 62 U . Thus
(x; y) 2 U 
 U c and, as always, (U 
 Uc) \� = �. Now when one is de�ning the
functors of the original Priestley duality we take a coherent space X and give it a
new patch topology. A base for the patch topology is given by

fU \ V cjU; V compact openg

and so we see that the specialization order, �, is closed as a subset of X �X when
X is given the patch topology. Thus there is evidence to suggest that we can �nd a
closed sublocale of the locale obtained when we move from a coherent locale to its
`patch topology' locale. This closed sublocale will come from (via pullback it turns
out) the specialization order on the original coherent locale.

We stay with our spatial intuitions for one more classical lemma:

Lemma 6.4.1 The set of compact opens of the patch topology on a coherent space

X is the free Boolean algebra on the distributive lattice of compact opens of X.

Proof: Certainly if U is a compact open of X it is a compact open of the patch
topology.
If W is in the patch topology then W =

S
i2I Ui \ V

c
i for some indexing set I . But

if W is compact in the patch topology then I can be taken to be �nite. The set

� � f
S
i2I Ui \ V

c
i jUi; Vi compact open, I �niteg � PX

is a Boolean algebra. The complement of

S
i2I Ui \ V

c
i

is given by the subset

S
[(\i2J1U

c
i ) \ (\i2J2Vi)]

where the union if taken over all pairs J1; J2 � I such that J1; J2 are �nite and
I � J1 [ J2. Clearly any element of � is compact open in the patch topology. 2

Thus the de�nition of this `patch topology' locale, (which will be the de�nition of
the localic part of B) is clear: given a coherent locale X we know 
X = Idl(K
X)
for some distributive lattice K
X . De�ne BX by 
BX = Idl(BX) where BX is
the free Boolean algebra on K
X .

The distributive lattice injection K
X � BX gives rise to a frame homomor-
phism from Idl(K
X) to Idl(BX) and hence to a locale map BX ! X which we
shall call lX . lX is a surjection. In fact

Lemma 6.4.2 lX is monic.
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Proof: Say

Y
f1 -

f2
- BX

lX - X

is a diagram in Loc such that lXf1 = lXf2. Then for all I 2 BX

I =
W"
f# bjb 2 Ig

since I is an ideal of BX . So to prove f1 = f2 it is suÆcient to prove


f1(# b) = 
f2(# b) 8b 2 BX

But for all b 2 BX

b = ^i2I (
lXai _ :
lXbi)

for some �nite I with ai; bi 2 K
X . And so the result follows since any frame
homomorphism clearly preserves complements. 2

One way to �nd a sublocale of BX � BX is to look at the pullback of the
specialization order on X �X (viewed as a sublocale) along the map lX � lX . i.e.
look at the pullback diagram

�BX
- v

BX �BX
?

?

lX � lX- X �X
?

?

where 
(v) � Fr < 
X

X qua frame j aO0 � 0Oa 8a 2 
X > (see Lemma
[2.7.2]) and hope that �BX is closed.

Lemma 6.4.3 Given the data above

:I
l - v

BX � BX
?

?

lX � lX- X �X

q

?

?

is a pullback diagram where I =
W
fa
:aja 2 K
Xg. (We view K
X � BX .)

The reason for the choice of I should be apparent from the spatial reasoning pre-
sented above.

Proof: We can translate I to a preframe equivalent:

I =
W"
f^i(aiO:bi)j ^i (ai _ :bi) = 0; ai; bi 2 K
Xg

Use the method of Lemma [2.7.1] to see this.

De�ne


l : 
(v) �! " I

aOb 7�! I _ (
lXaO
lXb)

This is seen to satisfy the `qua frame' part of the de�nition of 
(v). To conclude
that 
l is well de�ned we need:
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I _ (
lXaO0) � I _ (0O
lXa)

for all a 2 K
X . Notice that for any a 2 K
X since (a_0)^ (0_:a) = 0 we have
that I = I _ [(aO0) ^ (0O:a)]. But

I _ (aO0) = I _ [(aO0) ^ (0O1)]

= I _ [(aO0) ^ (0O(:a _ a))]

= I _ [(aO0) ^ [(0O:a) _ (0Oa)]]

= I _ [(aO0) ^ (0O:a)] _ [(aO0) ^ (0Oa)]

= I _ [(aO0) ^ (0Oa)]

� I _ (0Oa)

Hence l is well de�ned, and the diagram in the statement of the lemma clearly
commutes. Now say we are given Q;m; t such that

Q
t - v

BX �BX

m

? lX � lX- X �X

q

?

?

commutes. Then the function


z :" I �! 
Q

J 7�! 
(m)J

will (i) be well de�ned, (ii) make the appropriate triangles commutes and (iii) be a
frame homomorphism, provided we can check that 
(m)I = 0.

But 
m(I) =
W"
f
m ^i (aiO:bi)j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg and so it is

suÆcient to prove


m ^i (aiO:bi) = 0

whenever ^i(ai _ :bi) = 0 for ai; bi 2 K
X . With such conditions we see that
(
lX 

lX)(aiO0) = aiO0, and so


m(^i(aiO:bi)) = ^i
m((aiO0) _ (0O:bi))

= ^i[
m((
lX 

lX)(aiO0)) _
m(0O:bi)]

= ^i[
t
q(aiO0) _ 
m(0O:bi)]

� ^i[
t
q(0Oai) _ 
m(0O:bi)]

= ^i[
m(0Oai) _ 
m(0O:bi)]

= 
m[^i(0O(ai _ :bi))]

= 
m(0O ^i (ai _ :bi))

= 
m(0O0) = 0: 2

Now I � # so �BX is certainly reexive. It is shown in Lemma [2.7.3] that the spe-
cialization order is antisymmetric (v ^ w= �) and so �BX will be antisymmetric
since (i) the diagonal is preserved by pullback along a monic and (ii) pullback pre-
serves �nite meets of subobjects (as pullback is right adjoint to image factorization).

It is nice to know that the order on our ordered Stone locale can be found by
pulling back the specialization order since then antisymmetry and reexivity of the
order follows from the fact that these two axioms hold for the specialization order.
However we can prove that �BX is antisymmetric directly:
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Lemma 6.4.4 �BX is antisymmetric, where �BX is given by

a�BX =
W"
f^i(aiO:bi)j ^i (ai _ :bi) = 0; ai; bi 2 K
Xg.

Proof: We need to prove that (�BX)^ (�BX )
(p1;p2)

� BX�BX is the diagonal. We
may conclude this provided we check that its right hand projection is equal to its
left hand projection. i.e. p1 = p2. As a statement about frames this reads


(�1)(I) _ a� _ a� = 
(�2)(I) _ a� _ a� 8I 2 IdlBX

Note that we may restrict to the case that I 2 Idl(K
X). This is because lX is a
monomorphism. In fact we only need worry about compact Is. i.e. we may assume
I = a 2 K
X . In such a case 
�1I = aO0; 
�2I = 0Oa. Hence we need

aO0 _ a� _ a� = 0Oa _ a� _ a� 8a 2 K
X:

Before proof note that for any a 2 K
X since (a _ 0) ^ (0 _ :a) = 0 we have that

a� = a� _ [(aO0) ^ (0O:a)] (I)

a� = a� _ [(:aO0) ^ (0Oa)] (II)

Hence for any a 2 K
X

aO0 _ a� _ a� = a� _ [[a� _ (:aO0) _ (aO0)] ^ [a� _ (aOa)]] by (II)

= a� _ a� _ (aOa)

0Oa _ a� _ a� = a� _ [[a� _ (aOa)] ^ [a� _ (0O:a) _ (0Oa)]] by (I)

= a� _ a� _ (aOa): 2

So to be sure that B actually gives us an ordered Stone locale we need but check
that

a� =
W"
f^i(aiO:bi)j ^i2I (ai _ :bi) = 0 ai; bi 2 BX +op ai = ai;

+op bi = bi; I �nite g:

This will follow once we've shown that

Lemma 6.4.5 If X is a coherent locale and +op is the preframe endomorphism of


X that corresponds to the relation �BX then for all a 2 BX ,

a 2 K
X , a =+op a

Proof: It is always the case that +op a � a since �BX is reexive. Hence we need
but prove

a 2 K
X , a �+op a:

We know that

a�BX = _"f^i(aiO:bi)j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg.

Assume we are given a 2 K
X . So

+op a = _"f^i[ai _ 
!(1 � :bi _ a)]j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg

Simply take I = f1; 2g

a1 = a b1 = 0

a2 = 0 b2 = :a

to see that a �+op a.
Conversely say a 2 BX and a �+op a. Since `a 2 BX ' means a is compact we see
from our expression above for +op a that
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a � ^i2I [ai _ 
!(1 � :bi _ a)]

for some ai; bis in K
X with ^i(ai _ :bi) = 0. Hence

a � ^i(ai _ 
!(bi � a))

=
_

I=J1[J2

(^i2J1ai) ^ (^i2J2
!(bi � a))

=
_

I=J1[J2

(^i2J1ai) ^ (
!(_i2J2bi � a))

=
_

I=J1[J2

(_f^i2J1aij _i2J2 bi � ag)

=

"_
(
[

I=J1[J2

f^i2J1aij _i2J2 bi � ag)

The union is over all pairs J1; J2 � I such that J1; J2 are �nite and I � J1 [ J2.
The fact that this union is directed follows since if (J1; J2); ( �J1; �J2) are two pairs of
the indexing set then (J1 \ �J1; J2 [ �J2) is in the indexing set. Hence

a �
W"

(
S
f^i2J1aij _i2J2 bi � ag)

So, by compactness of a, it is possible to �nd J1; J2 subsets of I such that
I � J1[J2 with the property that a � ^i2J1ai and _i2J2bi � a. But the statement
^i(ai _ :bi) = 0 implies

_I�J1[J2 [(^i2J1ai) ^ (^i2J2:bi)] = 0

) (^i2J1ai) ^ (^i2J2:bi) = 0

) ^i2J1ai � :(^i2J2:bi) = _i2J2bi

Hence a = ^i2J1ai and since ai 2 K
X 8i we see that a 2 K
X . 2

It is unfortunate that we have to rely on a distributivity law in the middle of
the above proof. A more natural way to proceed would be to say: for every i 2 I

a � ai _
!(bi � a)

=

"_
(faig [ f1jbi � ag)

and so if we de�ne:

J1 � fija � aig

J2 � fijbi � ag

then compactness of a implies that I � J1 [ J2. This is all very well but we now
don't know for sure whether J1; J2 are �nite.

As for the e�ect of B on morphisms, say we are given a semi-proper locale map
f : X ! Y . So 
f restricts to a distributive lattice homomorphism from K
Y to
K
X , and hence extends naturally to a distributive lattice homomorphism on the
respective free Boolean algebras BY ; BX . This induces a locale map Bf from BX

to BY . We must check that this map is an ordered Stone locale map. i.e. that


BfÆ +op a �+op Æ
Bf(a)
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for every a 2 
BX
But

LHS = 
Bf(_"f^i[ai _
!(1 � :bi _ a)]j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg)

= _
"
f^i[
Bf(ai) _ 
!(1 � :bi _ a)]j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg

� _
"
f^i[
Bf(ai) _ 
!(1 � :
Bfbi _ 
Bfa)]j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg

� +
op
Æ
Bf(a)

To comprehend the last two lines we need to remind ourselves that 
Bf(a) =

f(a) 2 K
X if a 2 K
Y , and that if �
f is the extension of 
f : K
Y ! K
X
to the Boolean completions then �
f(:b) = :(
fb) for every b 2 K
Y . Thus B
de�nes a functor from CohLoc to OStoneLoc.

Fortunately the construction of a functor C in the opposite direction is less in-
volved than our construction of B. De�ne C as follows

C : OStoneLoc �! CohLoc

(X;�) 7�! Idl(fa 2 K
X j +op a = ag)

N.B. fa 2 K
X j +op a = ag is a subdistributive lattice ofK
X . The only tricky bit
in proving this is closure under �nite joins. But +op a � a 8a, so (i) 0 �+op 0 � 0
and (ii) if a =+op a; b =+op b then a _ b =+op a_ +op b �+op (a _ b) � a _ b.
The de�nition of C on morphisms is also clear: if f : (X;�X) ! (Y;�Y ) is an
ordered Stone locale map then it is proper and so is semi-proper; 
f preserves
compact opens. The fact that 
f(+op (a)) �+op 
f(a) 8a 2 
Y means that 
f
restricts to a distributive lattice homomorphism from fa 2 K
Y j +op a = ag to
fa 2 K
X j +op a = ag. So f induces a semi-proper map C(f) from C(X;�X) to
C(Y;�Y ).
It is now clear that checking that

CB(X) �= X 8X 2 Ob(CohLoc)

amount to showing that 8a 2 BX

a 2 K
X , a =+op a

(where BX is the free Boolean algebra over the distributive lattice K
X). But we
have shown this already in Lemma [6.4.5].
So all we need to do is ask: is BC(Y ) �= Y for all Y 2 OStoneLoc ?
Well we know that there is a distributive lattice inclusion,

fa 2 K
Y j +op a = ag ,! K
Y

but is it universal? If it is then the fact that we require

a�Y =
W"
f^i(aiO:bi)j ^i2I (ai _ :bi) = 0 ai; bi 2 BX +op ai = ai;

+op bi = bi; I �nite g

for Y to be an ordered Stone locale means that

�Y=�BC(Y ) :
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Thus we will be �nished provided we can check that the above inclusion is universal.
Assume a diagram

KC(Y ) � - K
Y

@
@
@
@
@

f
R

B

�

?

.................

where f is a distributive lattice homomorphism and B is a Boolean algebra.
Say a 2 K
Y and we have found two �nite sets of elements fai; biji 2 Ig;
f�a�i;

�b�ij�i 2 �Ig such that ^i(ai _:bi) = a = �̂i(�a�i _:
�b�i). (Where the ai; bi; �a�i;

�b�is are
in fa 2 K
Y j +op a = ag.) We want to check,

Lemma 6.4.6 ^i(fai _ :fbi) = �̂i(f�a�i _ :f�b�i)

(For then it will be `safe' to de�ne �(a) = ^i(fai _ :fbi) for any
fai; biji 2 Ig � KC(Y ) such that a = ^i(ai _ :bi).)

Proof: We have done this already really in Lemma [1.3.3]. To conclude that
^i(fai_:fbi) � �̂i(f�a�i_:f

�b�i) we need to prove that for every �i and for every pair
J1; J2 � I with I � J1 [ J2 we have

(^i2J1fai) ^ (^i2J2:fbi) � (f�a�i _ :f
�b�i)

This relies on the by now well known �nite distributivity law being applied to the
meet ^i(fai _ :fbi). But the last inequality can be manipulated to

f((^i2J1ai ^
�b�i) _ _i2J2bi) � f((�a�i ^

�b�i) _ (_i2J2bi))

and the fact that (^i2J1ai ^
�b�i)__i2J2bi � (�a�i ^

�b�i)_ (_i2J2bi) follows from exactly
the same manipulations applied to the assumption

^i(ai _ :bi) � �̂i(�a�i _ :�b�i). 2

Assumption: 8a 2 K
Y 9fai; biji 2 Ig � KCY s.t. ^i(ai _ :bi) = a.

If this assumption is true then � will be a (necessarily unique) Boolean homomor-
phism extending f . [For if a = ^i2I (ai_:bi) and �a = ^i2�I (ai _:bi) ) a^ �a =
^I[�I(ai _ :bi). So

�(a ^ �a) = ^I[�I(fai _ :fbi)

= [^i2I (fai _ :fbi)] ^ [^i2�I (fai _ :fbi)]

= �(a) ^ �(�a)

Similarly for _.]
We also have the following Boolean algebra lemma:

Lemma 6.4.7 If I; �I are �nite sets and fai; biji 2 Ig and f�a�i;
�b�ij�i 2 �Ig are sets of

elements of some Boolean algebra B, and ^i(ai _ :bi) = 0; �̂i(�a�i _ :�b�i) = 0. Then
for any J1; J2 � I � �I, �nite subsets, such that I � �I � J1 [ J2 we have

^(i;�i)2J1(ai _ :
�b�i) � _(i;�i)2J2(:�a�i ^ bi)
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Proof: The conditions imply:

[^(ai _ :bi)] _ [^(�a�i _ :�b�i)] = 0

) ^(i;�i)2I��I [ai _ :bi _ �a�i _ :�b�i] = 0

) _I��I�J1[J2
[(^(i;�i)2J1(ai _ :

�b�i)) ^ (^(i;�i)2J2(�a�i _ :bi))] = 0

) (^(i;�i)2J1(ai _ :
�b�i)) ^ (^(i;�i)2J2(�a�i _ :bi)) = 0

The result follows since

:(^(�a�i _ :bi)) = _(:�a�i ^ bi). 2

We can now prove our assumption:

Theorem 6.4.1 If (Y;�) is an ordered Stone locale and a 2 K
Y then

a = ^i2I(ai _:bi) for some �nite I with ai; bi 2 K
Y and +op ai = ai;+
op bi = bi.

Proof: Clearly the antisymmetry axiom must now come into play. This axiom
states that

(�) ^ (�) �Sub(X�X) �

which as a statement about the opens of 
(X �X) reads:

a� _ a� � #

But a = # � a since # corresponds to the identity of relational composition. Thus

a � (a� _ a�) � a (I)

From our axioms used to de�ne `ordered Stone locale' we know,

a� = _"f^i(aiO:bi)j ^i (ai _ :bi) = 0 ai; bi 2 K
Y +op ai = ai +op bi = big

symmetrically

a� = _"f �̂i(:
�b�iO�a�i)j �̂i (�a�i _ :

�b�i) = 0 �a�i;
�b�i 2 K
Y +op �a�i = �a�i +op �b�i =

�b�ig.

Thus a� _ a� is a directed union of elements of the form

[^i(aiO:bi)] _ [ �̂i(:
�b�iO�a�i)]

= ^(i;�i)2I��I [(aiO:bi) _ (:�b�iO�a�i)]

= ^(i;�i)2I��I [(ai _ :
�b�i)O(:bi _ �a�i)]

Since a is compact and ( ) � a preserves directed joins and �nite meets we see from
(I) that

a � ^(i;�i)2I��I([(ai _ :
�b�i)O(:bi _ �a�i)] � a)

for some fai; biji 2 Ig; f�a�i;�b�ij�i 2 �Ig such that ^i(ai _:bi) = 0; �̂i(:�b�i _ �a�i) = 0 and
+op ai = ai;+

op bi = bi;+
op �a�i = �a�i;+

op �b�i = �b�i. Now

[(ai _ :�b�i)O(:bi _ �a�i)] � a

= (ai _ :�b�i) _ 
!(1 � :bi _ �a�i _ a)

= _
"[fai _ :�b�ig [ f1jbi ^ :�a�i � ag]
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And so, similarly to Lemma [6.4.5], via compactness of a we can �nd �nite subsets
J1; J2 � I � I with the properties:

a � ai _ :�b�i 8(i;�i) 2 J1

bi ^ :�a�i � a 8(i;�i) 2 J2

I � �I � J1 [ J2

Clearly (by de�nition of J1; J2)

a � ^(i;�i)2J1(ai _ :
�b�i)

and _(i;�i)2J2(:�a�i ^ bi) � a:

But by the last lemma

^(i;�i)2J1(ai _ :
�b�i) � _(i;�i)2J2(:�a�i ^ bi)

and so a = ^(i;�i)2J1(ai _ :
�b�i): 2

6.5 Notes

In his thesis `The Structure of (free) Heyting Algebras' ([Pre93]) Pretorius proves a
constructive version of Priestley's duality. He shows that the the coherent locales are
dual to a particular subcategory of the category of pairs of frames (where the second
element of the pair is a subframe of the �rst and morphisms of this category are
frame homomorphisms that preserve the subframe). This particular subcategory is
seen, assuming PIT, to be equivalent to the ordered Stone spaces and so Priestley's
original duality is recovered. It is not clear how, from its de�nition, to view this
particular subcategory localically; although given the results of this chapter we now
know that it is constructively equivalent to the ordered Stone locales.
The methods of Pretorius' proof are very di�erent from ours. He makes much use
of the frame of congruences on a distributive lattice. His observation that `the set
of compact congruences on a distributive lattice is the free Boolean algebra on that
lattice' has helped us in two important ways. Firstly it shows us how to construct
the free Boolean algebra on a distributive lattice (see Section 1.3). This is not a
trivial problem as the usual method, via �nitary universal algebra, is not allowed
in our context since it depends on the natural numbers. Secondly the fact that

the compact congruences form the free Boolean algebra means that we have a much
simpler proof of Banaschewski and Br�ummer's result that the stably locally compact
locales correspond to the compact regular biframes [BB88]. The consequences of
this correspondence forms the content of our last chapter.



Chapter 7

Hausdor� Systems

7.1 Introduction

Given a poset (X;�) we can construct Idl(X), its ideal completion. Idl(X) is
an algebraic dcpo. For any algebraic dcpo, A, we can construct KA, the set of
compact elements of A. These constructions are inverse to each other. However
we cannot conclude that the category of posets is equivalent to the category of
algebraic dcpos. This is because not all dcpo maps preserve compact opens. But if
we extend the morphisms between posets to relations (satisfying suitable conditions)
then a categorical equivalence can be established. This is the idea behind Scott's
information systems (see [Sco82]). One of the reasons for presenting algebraic dcpos
as posets (=information systems) is that it becomes possible to use the presentation
to solve domain equations. Domains are special types of algebraic dcpos and the
problem of solving domain equations is important in theoretical computer science.
See [Vic89] for background on domains and [LW84] for details about how domain
equations can be solved using information systems. The problem of extending this
equivalence to the retracts of the algebraic dcpos (i.e. the continuous posets) is
dealt with in [Vic93]. In [Vic93] Vickers introduces the category of continuous
information systems (InfoSys). These are pairs (X;R) where X is a set and R is
a relation on X which is idempotent with respect to relational composition. There
are many morphisms possible between continuous information systems. The most
general are relations:

R : (X;RX)! (Y;RY )

R � X � Y such that R = RY Æ R Æ RX where Æ is relational composition. These
are called the lower approximable semimappings.
We de�ne Hausdor� systems to be the proper parallel to continuous information
systems. So a Hausdor� system is a pair (X;R) where X is a compact Haus-
dor� locale and R is a closed relation such that R Æ R = R. Upper approximable
semimappings between Hausdor� systems are closed relations R ,! X � Y ,

R : (X;RX)! (Y;RY ),

such that R = RY Æ R Æ RX where Æ is compact Hausdor� relational composition.
We have de�ned the category

HausSysU

If (X;R) is an infosys then we know (Chapter 4) that there is a SUP-lattice homo-
morphism #R: PX ! PX corresponding to R. #R is idempotent since R is. The
set

131
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fT jT 2 PX #R T = Tg

can then easily be seen to be a constructively completely distributive lattice. The
essence of [Vic93] is a proof that all constructively completely distributive lattices
arise in this way.
Given a Hausdor� system (X;R) we know that there is a preframe morphism
+op: 
X ! 
X corresponding to R (Chapter 4). Hence

faja 2 
X +op a = ag

is a subpreframe of 
X . It also has �nite joins: +op 0 is least and the join of a; b is
given by +op (a _ b). Further,

Lemma 7.1.1 
 �X � faja 2 
X +op a = ag is the frame of opens of a stably

locally compact locale.

Proof: First we check that the frame is continuous, i.e. that 8a 2 
 �X

a =
W"
fbjb�
 �X ag (�)

Since 
X is compact regular we know that (8a; b 2 
X)

a� b , a� b

Hence to conclude (�) all we need do is check that

b� a ) +op b�
 �X a

if a 2 
 �X . Say b� a and a �
W"

S S �" 
 �X then 9s 2 S b � s )

+op b �+op s = s.
As for stability we need to check that 1�
 �X 1 (trivial by compactness of 
X) and
a �
 �X b1; b2 implies a �
 �X b1 ^ b2. Since bi 2 
 �X, 
X is regular and +op is a
preframe homomorphism we know that

bi =
W"
f+op cjc� big

Hence a �+op ci for some c1; c2 with ci � bi. Hence a �+op (c1 ^ c2). But
c1 ^ c2 � b1 ^ b2 and so c1 ^ c2 � b1 ^ b2. Hence a�
 �X b1 ^ b2. 2

The next section is devoted to proving that every stably locally compact locale
arises in this way. From then our program is to check that this equivalence can be
made categorical by restricting the class of relations that are allowed to be Hausdor�
system maps. The program is the proper parallel to the contents of [Vic93].

7.2 Stably locally compact locales

Let StLocKLocU be the category whose objects are stably locally compact locales
and whose morphisms are formally reversed preframe maps. Bearing in mind the
correspondence between preframe homomorphisms on the frame of opens of compact
Hausdor� locales and closed relations on these locales (as captured by Theorem
[4.3.1]) it should be clear that there is a functor:

CU : HausSysU ! StLocKLocU

(X;R) 7! �X

where 
 �X = fa 2 
X j +op a = ag.
If R : (X;RX) ! (Y;RY ) is an upper approximable semimapping (i.e. if RY Æ R Æ
RX = R) then it is clear that  R (the preframe homomorphism from 
Y to 
X
corresponding to R) is going to satisfy:
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 R = X
+
op
Æ R Æ

Y
+
op

From this it follows that  R will restrict to a preframe homomorphism from 
�Y to

 �X. CU is functorial.

Lemma 7.2.1 The map

HausSysU ((X;RX); (Y;RY )) �! PreFrm(
�Y ;
 �X)

R 7�! ( R)j
 �X

is a bijection. i.e. CU is full and faithful.

Proof: Send a preframe map � : 
 �Y ! 
 �X to the relation corresponding to the
preframe homomorphism

X
+
op
Æ � Æ Y +op : 
Y �! 
X 2

We want to de�ne

BU : StLocKLocU ! HausSysU

Fix, for the rest of the section, X , a stably locally compact locale. De�ne �
X to
be the set of Scott open �lters of 
X . So F 2 �
X i�

(i) F is upper

(ii) a; b 2 F ) a ^ b 2 F

(iii) 1 2 F

(iv) a 2 F ) 9b 2 F b� a:

The following lemma is in [BB88],

Lemma 7.2.2 �
X is the frame of opens of a stably locally compact locale.

Proof: If F1; F2 are two Scott open �lters then

F1 _ F2 =" fa1 ^ a2ja1 2 F1; a2 2 F2g

Directed joins are given by union. F1 ^F2 = F1 \F2, �nite distributivity is an easy
manipulation. If G is a Scott open �lter then

G =
S"
f""bjb 2 Gg

Hence F � G if and only if there is a b 2 
X such that F �" b � G. 2

Since X is stably locally compact we know that there is a frame injection

## : 
X ! Idl
X . Now de�ne B
X to be the free Boolean algebra on 
X qua
distributive lattice. There is a frame injection of Idl
X into IdlB
X which we
will denote by 
l. So if we compose this injection with ## we �nd that 
X can be
embedded in IdlB
X . Notice that if �a� a then # �a � 
l##a.

Lemma 7.2.3 �
X can be embedded into IdlB
X .

Proof: Send F to
W"
b2F # :b. It is routine to check that this is a frame

injection. 2
De�ne: 
Y=the subframe of IdlB
X generated by the image of the above two
embeddings.
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Theorem 7.2.1 Y is a compact Hausdor� locale.

Proof: Compactness is immediate since 
Y is a subframe of the compact frame
IdlB
X . As for regularity it is clearly suÆcient to check that


l##a =
W"
fI jI �
l##ag

for every a 2 
X and
W"
b2F # :b =

W"
fI jI �

W"
b2F # :bg

8F 2 �
X .
However a =

W"
fxjx � ag and F =

W"
fGjG � Fg since both 
X and �
X are

continuous posets. So it is suÆcient to prove that

x� a ) 
l##x�
l##a (I)

G� F )

"_

b2G

# :b�

"_

b2F

# :b (II).

(I): Say x � a. Set F = ""x (a Scott open �lter). Then
W"
b2F # :b 2 
Y . But

clearly


l##x ^
W"
b2F # :b = 0

Further x� a ) 9�a x� �a� a. Hence


l##a _

"_

b2F

# :b � 
l##a_ # :�a

� # �a_ # :�a = 1

Hence 
l##x�
l##a.

(II): Say G� F . So 9x 2 F G � ""x � F (since F =
W"
f""xjx 2 Fg). Then

W"
b2G # :b ^ 
l##x = 0

Now x 2 F ) 9�x 2 F �x� x and so


l##x _
W"
b2F # :b �# �x_ # :�x = 1 2

We want a closed idempotent relation on Y and so we need to �nd a preframe
endomorphism +op: 
Y ! 
Y such that (+op)2 = +

op. If I; J 2 
Y we write
I �1 J if and only if 9F 2 �
X such that

I ^
W"
b2F # :b = 0

J _
W"
b2F # :b = 1

Clearly �1� � and the last proof has shown us that x � a implies 
l##x �1 
l##a.
De�ne

+
op: 
Y �! 
Y

J 7�!

"_
fI jI = 
l##a for some a; I �1 Jg:

Facts about +op:
? 8J; +op (J) = 
l##a for some a 2 
X
? +op (
l##a) = 
l##a 8a

? (+op)2 =+op
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? +op is a preframe homomorphism.
Hence de�ne BU : StLocKLocU ! HausSysU by B(X) = (Y;R), where R is the
closed relation corresponding to +op.

The above de�nition did not simply jump out of a hat. Although presented
in a very di�erent way it is essentially just a restructuring of Banaschewski and
Br�ummer's construction of a compact regular biframe from a stably locally compact
locale. In their paper [BB88] they embedded 
X and �
X into the frame of
frame congruences via exactly the same functions; regularity of the frame generated
follows the same path. Compactness in their proof is not immediate. They embed
the frame generated into the frame of frame congruences of the ideal completion of

X , pointing out that this embedding will be contained within the frame generated
by congruences of the form

(# a ,! Z) ^ (: # b ,! Z)

where 
Z = Idl
X , a; b 2 
X . Another lemma veri�es that the frame generated
by these congruences is compact. But it can be seen that the frame generated by
these congruences is just the ideal completion of the compact distributive lattice
congruences on 
X . Pretorius [Pre93] tells us that the set of such compact congru-
ences is the Boolean completion of the distributive lattice 
X and so we see that we
can embed into the ideal completion of the Boolean completion of 
X ; see Section
1.3. This is exactly what is done above.

How is BU de�ned on morphisms? Say f : X1 ! X2 is a morphism of
StLocKLocU (so 
f : 
X2 ! 
X1 is a preframe homomorphism). From the
starred `facts about +op' above we see that the set of +op-�xed opens of BU (X) is
just the image of the inclusion 
l## : 
X ! 
BU (X). Hence 
X is isomorphic to

CUBU (X). So we can �nd a unique �f such that

CUBUX1

�f- CUBUX2

X1

�=

? f - X2

�=

6

commutes. But CU is full and faithful. So there is a unique BUf : BUX1 ! BUX2

such that �f = CUBUf .

Lemma 7.2.4 (X;R) �= (Y; S) in HausSysU if and only if 
 �X �= 
�Y as posets.

Proof: Say (X;R) �= (Y; S) in HausSysU . It follows that there are upper approx-
imable mappings

T : (X;R) �! (Y; S)

Q : (Y; S) �! (X;R)

such that T Æ Q = S and Q Æ T = R, where Æ is relational composition. To
see this notice that R : (X;R) ! (X;R) is the identity on the Hausdor� system
(X;R). If  T ;  Q are the preframe homomorphisms corresponding to T;Q then

 T Æ  Q = R
+
op and  Q Æ  T = S

+
op. From which it follows

 T j
�Y : 
 �Y �! 
 �X

 Qj
 �X : 
 �X �! 
�Y
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are (order preserving) bijections. Conversely , say


 �X

� -�
��


�Y

are order preserving bijections. Then � and �� are preframe homomorphisms. So if
� is de�ned so as to make


Y
� - 
X


�Y

Y
+
op

? �� - 
 �X

[

6

commute and  is de�ned to make


X
 - 
Y


 �X

X
+
op

? � - 
�Y

[

6

commute we see that �;  are preframe homomorphisms. If T;Q are the rela-
tions corresponding to  ; � respectively then clearly T;Q are upper approximable
semimappings which are inverse to each other in HausSysU . 2

Theorem 7.2.2 HausSysU
�= StLocKLocU

Proof: We need to check BUCU (X;R) �= (X;R) in HausSysU , for every Haus-
dor� system (X;R). This is immediate from the preceding lemma since we know
CUBUCU (X;R) �= 
 �X = CU (X;R). 2

7.3 Approximable Mappings

In the paper [Vic93] various di�erent types of morphisms between continuous infor-
mation systems are introduced. So far we have only examined the proper parallel
to InfoSysL. i.e. to the case where the morphisms are relations
R : (X;RX) ! (Y;RY ) such that RY Æ R Æ RX = R. On the `open' side we see
(Theorem 3.7 of [Vic93]) that

InfoSysL
�= CCDLocL

where CCDLocL is the category whose objects are constructively completely dis-
tributive locales and whose morphisms are formally reversed SUP-lattice homomor-
phisms. On the proper side:

HausSysU
�= StLocKLocU

In [Vic93] we see that the equivalence can be re�ned:

InfoSys �= CCDLoc
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CCDLoc has been introduced in Section 1.6. InfoSys has as objects all continu-
ous information systems just as before. The morphisms are now the approximable

mappings. Say R : (X;RX)! (Y;RY ) is a lower approximable semimapping. Then
it is an approximable mapping provided it also satis�es:

(i) s0RXs ) 9t0 2 Y s0Rt0

(ii) s0RXs sRt1 sRt2 ) 9t0 2 Y s0Rt0 t0RY t1 t0RY t2

For a justi�cation of these axioms notice that if RX ; RY are partial orders then
(i); (ii) are saying that for every s 2 X , ftjsRtg is an ideal of Y .
It is quite easy to see that these two conditions can be expressed as:

(i) #
X (X) � Y ÆR

(ii) #
X (A1 ÆR \A2 ÆR) � (#Y A1\ #

Y A2) ÆR

where A1; A2 range over all subsets of Y . i.e. they range over all open sublocales of
Y (viewed as a a discrete locale). Hence it should be clear what an approximable
mapping between Hausdor� systems should be:

R : (X;RX)! (Y;RY )

is an approximable mapping of Hausdor� systems if and only if R = RX Æ R ÆRY
and

(i) +
X (X) �Sub(X) Y ÆR

(ii) +
X (F ÆR ^G ÆR) �Sub(X) (+

Y F^ +Y G) ÆR

for all closed sublocales F;G of Y . Say  R : 
Y ! 
X is the preframe homomor-
phism corresponding to R. Then these equations are equivalent to the requirements:

(i)  R(0) �
X
+
op(0)

(ii)  R(
Y
+
op a _ Y

+
op b) � X

+
op( R(a) _  R(b)):

It is easy, from these de�nitions, to check that R : (X;R) ! (X;R) is always
an approximable mapping and that approximable mappings are closed under com-
position. Let HausSys be the category of Hausdor� systems with approximable
mappings. It should now be clear that we have a functor:

C : HausSys! StLocKLoc

where StLocKLoc is the full subcategory of Loc consisting of the stably locally
compact locales. The only diÆculty is checking that the approximable mappings
give rise to frame homomorphisms. Say R : (X;RX)! (Y;RY ) is an approximable
mapping. Then, as in the HausSysU case, we know that  R restricts to a preframe
homomorphism from 
�Y (� fa 2 
Y j +op a = ag) to 
 �X. For every a and b in

�Y

 R(a _
�Y b) =  R(
Y
+
op(a _ b))

=  R(a _ b) ( R =  R Æ
Y
+
op)

�
X
+
op( R(a) _  R(b)) (a; b 2 
�Y )

=  R(a) _
 �X  R(b):

And

 R(0
�Y ) =  R(+
op 0)

=  R(0) �
X
+
op 0

= 0
 �X :
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So  R restricts to a frame homomorphism from 
�Y to 
 �X. On the other hand it is
easy to follow the de�nitions and prove that every frame homomorphism from 
�Y
to 
 �X gives rise to an approximable mapping from (X;RX) to (Y;RY ) just as in
Lemma [7.2.1]. In fact the conclusion of that lemma is easily seen to hold here: C
is full and faithful.

The next task is to check that the construction BU gives rise to a well de�ned
functor:

B : StLocKLoc! HausSys

This amounts to checking that if f : X1 ! X2 is a locale map between two stably
locally compact locales then BUf : BU (X1) ! BU (X2) is an approximable map-
ping. By reexamining the construction of BUf we see that this fact follows from
our observation that C is full and faithful.

Notice that Lemma [7.2.4] can now be repeated withHausSys in place ofHausSysU
and we may conclude:

Theorem 7.3.1 HausSys �= StLocKLoc. 2

7.4 Ho�mann-Lawson Duality

We use the blanket term Ho�mann-Lawson duality to cover dualities induced by
the action of taking Scott open �lters. Ho�mann and Lawson initially proved such a
duality for continuous posets in [Hof79],[Hof81] and [Law79]. In [Vic93] we see how
to make the duality constructive: the Ho�mann-Lawson dual of a continuous poset
is found by taking the opposite of the corresponding continuous information system.

By analogy, for a Hausdor� system (X;R) there is a duality (on objects) which
takes (X;R) to (X; �R) where �R is the composite

R ,! X �X
�
�! X �X

(� is the twist isomorphism). It is not immediately clear how to make this duality
functorial. i.e. how to de�ne a functor

� : HausSys �! HausSysop

Notice that if we reexamine (HausSys)U then

� : HausSysU �! HausSys
op

U

clearly is well de�ned. This is because

RY ÆR ÆRX = R , �RX Æ �R Æ �RY = �R

and so we get our �rst duality:

(HausSys)U �= (HausSys)opU

We have also (by implication) just checked that

(StLocKLoc)U �= (StLocKLoc)opU

On the open side there is the result

CCDLocU �= CCDLoc
op

U
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where the U indicates that the morphisms are formally reversed SUP-lattice homo-
morphisms. Notice that in our constructive context we cannot just take the opposite
of a constructively completely distributive lattice in order to get its dual; if we could
then the opposite of a constructively completely distributive lattice would be con-
structively completely distributive and, following our discussion in 1.6, this would
imply that the excluded middle is true. The easiest constructive way of describing
this duality is by looking at the points. We know that a CCD locale is uniquely
determined by its continuous poset of points. [Vic93] shows how the above duality
corresponds to taking the Scott open �lters of these points in order to get the points
of the dual. i.e. we are looking at a Ho�mann-Lawson duality.
What is the dual of a stably locally compact locale? Given that we are looking for a
Ho�mann-Lawson duality and we have observed already that �
 �X is the frame of
opens of a stably locally compact locale if �X is stably locally compact, it is clearly
desirable to prove,

Theorem 7.4.1 If (X;R) is a Hausdor� system then

fa 2 
X j *op a = ag �= �fb 2 
X j +op b = bg.

Proof: Recall from Chapter 5 that if (X;R) is a Hausdor� system (i.e. R2 = R)
then

aR =
W"
f^i(+

op aiO *
op bi)j ^i2I (ai _ bi) = 0 I �niteg.

(We see this result contained within the �rst few lines of the proof of Lemma [5.1.3].)
It follows that

*op a =
W"
f^i(*

op ai _ 
!(1 � a_ +op bi))j ^i (ai _ bi) = 0g (�)

De�ne a function:

� : fa 2 
X j *op a = ag �! �fb 2 
X j +op b = bg

a 7�! f+
op bj1 � a_ +op bg

Clearly �(a) is a �lter on fbj +op b = bg � 
 �X. Say +op b 2 �(a). We know

+op b =
W"
f+op �bj�b�
X+

op bg

since +op b =
W"
f�bj�b �
X+

op bg. Thus by compactness of 
X since 1 � a_ +op b

we know 9�b�
X+
op b with 1 � a_ +op �b. Hence +op �b 2 �(a). But

�b�
X+
op b ) +op �b�
 �X+

op b [7.1.1]

and so �(a) is a Scott open �lter. i.e. � is well de�ned.
Further note that � reects order: say we are given a; �a 2 faj *op a = ag with

f+op bj1 � a_ +op bg � f+op bj1 � �a_ +op bg then 8b

1 � �a_ +op b ) 1 � a_ +op b

and so the fact that *op �a �*op a can be read o� from (�).
In the other direction de�ne

 : �
 �X �! faja 2 
X *
op a = ag

F 7�!

"_
f*

op aja 2 
X such that 9b 2 
X with a ^ b = 0 +
op b 2 Fg

We need to show that 8F 2 �
 �X
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F = f+op bj1 �  (F )_ +op bg

Proof of this: Say b 2 F then b =+op b. Since F is a Scott open �lter we know
that 9�b 2 F such that

�b�
 �X b:

The dual of (�) is

+
op c =

W"
f^i(+

op bi _ 
!(1 � c_ *op ai))j ^i (ai _ bi) = 0g.

But every (+op bi _ 
!(1 � c_ *op ai)) is in 
 �X since it can be expressed as a
directed join of elements of 
 �X. Hence

b =+op b =
W"

 �X
f^i(+

op bi _
!(1 � b_ *op ai))j ^i (ai _ bi) = 0g

�b�
 �X b ) 9
��b 2 
 �X �b�
 �X

��b�
 �X b.
Hence there exists a �nite collection (ai; bi)i2I with ^i(ai _ bi) = 0 such that

��b � ^i(+
op bi _ 
!(1 � b_ *op ai))

Hence (see Lemma [6.4.5]) there exists J1; J2 � I �nite such that I = J1 [ J2 and

�b � ^i2J1(+
op bi) 1 � b _ ^i2J2 *

op ai

Hence �b �+op (^i2J1bi) and so +op (^i2J1bi) is in F . Now by the familiar �nite
distributivity law we know that

^i2I (ai _ bi) =
W
I=J1[J2

((^i2J1ai) ^ (^i2J2bi))

and so since (^i2J1bi) ^ (^i2J2ai) = 0 we get that *op (^i2J2ai) �  (F ). So
1 �  (F ) _ b.

On the other hand say 1 �  (F )_ b for some b with +op b = b. By the compactness
of 
X (and the de�nition of  ) we know that

1 �*op a _ b

for some a 2 
X such that 9�b 2 
X with the properties that a ^ �b = 0 and
+op �b 2 F . However recall Lemma [5.2.1]. This stated that for any a; b 2 
X we
have that

1 �*op a _ b , 1 � a_ +op b:

Hence �b �+op b. This implies +op �b �+op b = b. It follows that b 2 F since
+op �b 2 F . 2

There is no natural way of �nding a contravariant functor from HausSys to
HausSys since if R is an approximable mapping then we cannot hope that �R
is also an approximable mapping. Just as in the open parallel we symmetrize
the de�nition of approximable mapping in order to de�ne a new class of functions
between Hausdor� systems which will give rise to a contravariant functor. Clearly
the parts of the de�nition which need to be symmetrized are the conditions:

(i) +
X (X) �Sub(X) Y ÆR

(ii) +
X (F ÆR ^G ÆR) �Sub(X) (+

Y F^ +Y G) ÆR

De�ne a Lawson approximable mapping to be an approximable mapping which also
satis�es

(i) *
Y (Y ) �Sub(Y ) X Æ �R

(ii) *
Y (F Æ �R ^G Æ �R) �Sub(Y ) (*

X F^ *X G) Æ �R

where F;G are arbitrary closed sublocales of X . Hence de�ne the category
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(HausSys)�

whose morphisms are the Lawson approximable mappings. It should be clear that
if R : (X;RX) ! (Y;RY ) is a Lawson approximable mapping then there are two
frame homomorphisms:

 R : fb 2 
Y j Y +op b = bg ! fa 2 
X jX+op a = ag

 �R : fa 2 
X jX*op a = ag ! fb 2 
Y j Y *op b = bg.

We would like to de�ne the class of Lawson maps between stably locally compact
locales and so de�ne a category (StLocKLoc)� with the property

(HausSys)� �= (StLocKLoc)�

The nature of the duality induced by � should then be clear. We will say that
f : �X ! �Y (a locale map) between stably locally compact locales is Lawson i�

(
f)�1 : �
 �X �! �
�Y

preserves �nite joins. That this is a sensible guess can be seen straightaway by
noting that  �R is a frame homomorphism from �
 �X to �
�Y for any Lawson
approximable mapping R. This follows from the last theorem.

Theorem 7.4.2 (HausSys)� �= (StLocKLoc)�

Proof: Although the proof is slightly trickier it is still essentially a variation of the
proof of HausSysU

�= StLocKLocU . As a �rst step we check the fact that the set
of Lawson approximable maps from (X;RX) to (Y;RY ) corresponds to the set of
Lawson maps from �X to �Y via the usual transformation (i.e. R 7!  Rj
�Y ). Say we
are given a Lawson approximable map R : (X;RX)! (Y;RY ). Then we will know
that  Rj
�Y is the frame homomorphism corresponding to a Lawson map form �X
to �Y provided we can check my claim that the composite

�
 �X
�=
�! fajX*op a = ag

 �R
�! fbj Y *op b = bg

�=
�! �
�Y

is given by ( R)
�1. (For then we know ( R)

�1 preserves �nite joins since  �R
does.) Recalling the proof of the last theorem we see that the above composite
takes F (2 �
 �X) to

G � f+op bj1 �
W"
f*op  �R(a)j9�a a ^ �a = 0 +op a 2 Fg_ +op bg

We want

+op b 2 G ,  R(+
op b) 2 F

Now F = f+op aj1 �
W"
f*op a0j9�a a0 ^ �a = 0 +op �a 2 Fg_ +op ag.

So +op b 2 G if and only if 9�a; a0 a0 ^ �a = 0 +op �a 2 F such that

1 �*op  �R(a0)_ +
op b

, 1 �  �R(*
op a0)_ +

op b

and  R(+
op b) 2 F , 9�a; a0 a0 ^ �a = 0 +op �a 2 F ,

1 �*op a0 _  R(+
op b)

But we have seen that for every a 2 
X; b 2 
Y

(1 �  �R(a) _ b) , (1 � a _  R(b))
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(Lemma [5.2.1]), and the composition gives ( R)
�1 as required.

On the other hand say we are given f : X1 ! X2 a Lawson map between stably
locally compact locales. Set (X;RX) = B(X1); (Y;RY ) = B(X2) and R = Bf . So

R : (X;RX) �! (Y;RY )

is an approximable mapping. We check that it is Lawson. As usual  R : 
Y ! 
X
is the preframe homomorphism corresponding to R. Clearly


�Y
 Rj
�Y- 
 �X


X2

�=

? 
f- 
X1

�=

6

commutes (where �= is as in the veri�cation that CB(Xi) �= Xi), and so
( R)

�1 : �
 �X ! �
�Y preserves joins since (
f)�1 : �
X1 ! �
X2 does. But
we have just shown that ( R)

�1 : �
 �X ! �
�Y is given by the composite

�
 �X
�=
�! fajX*op a = ag

 �R
�! fbj Y *op b = bg

�=
�! �
�Y

and so  �RjfajX*op a=ag preserves joins which is suÆcient to prove that

�R : (Y; �RY )! (X; �RX )

is an approximable mapping. i.e. R is Lawson. 2

7.5 Products

Lemma 7.5.1 (1; 1) is the terminal object of HausSys. If (X;R); (Y; S) are two

Hausdor� systems then

(X;R)� (Y; S) = (X � Y; i(R� S))

where i : (X �X)� (Y � Y )! (X � Y )� (X � Y ) is the twist isomorphism.

Proof: Clearly (1; 1) is terminal. This follows since for any Hausdor� system
(X;R) we know that approximable mappings from (X;R) to (1; 1) correspond to
locale maps from �X to 1.
If R+op; S+op are the preframe homomorphisms corresponding to R;S then

R
+
op


S
+
op : 
X 

Y �! 
X 

Y

is the preframe homomorphism corresponding to i(R � S). We need projection
relations:

P1 : (X � Y; i(R� S)) ! (X;R)

P2 : (X � Y; i(R� S)) ! (Y; S)

De�ne P1 to be the pullback of R along

X � Y �X
�13
�! X �X

and P2 to be the pullback of S along

X � Y � Y
�23
�! Y � Y
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Hence the opens corresponding to P1; P2 are

aP1 = 
�13(aR)
aP2 = 
�23(aS)

and the preframe homomorphisms corresponding to P1; P2 are


�1 Æ
R
+
op


�2 Æ
S
+
op

where �1 : X � Y ! X , �2 : X � Y ! Y are the usual projections. The best way
of demonstrating this last claim is to look at the cases aR = a1Oa2; aS = b1Ob2.
From this it is clear that P1; P2 are approximable mappings.
We need to check that if Q1 : (Z; T ) ! (X;R) and Q2 : (Z; T ) ! (Y; S) are two
approximable mappings, then there exists a unique approximable map

L : (Z; T ) �! (X � Y; i(R� S))

such that PiL = Qi for i = 1; 2.
Assume such an L exists. Say  Pi ;  L;  Qi are the corresponding preframe maps.

Then since  L is an approximable mapping it must satisfy  LÆ(
R
+
op


S
+
op) =  L.

Hence for every aOb 2 
X 

Y we must have

 L(aOb) =  L(
R
+
op aO S

+
op b)

=  L( P1(a) _  P2(b))

=  L((
R
+
op


S
+
op)( P1 (a)) _ (R+op
 S

+
op)( P2(b)))

= T
+
op( L P1(a) _  L P2(b))

= T
+
op( Q1

(a) _  Q2
(b))

The penultimate line is by the fact that  L is an approximable map. Thus L is
uniquely determined and it is clear from the above what formula should be assigned
to  L in order to de�ne L such that PiL = Qi. 2

7.6 Semi-Proper Maps

In Banaschewski and Br�ummer's paper \Stably Continuous Frames" ([BB88]) there
is a proof that the category of stably continuous frames and `proper' maps is equiv-
alent to the category of compact regular biframes. Their `proper' maps are `�'
preserving frame homomorphisms. We refer (see Section 1.7.3) to `�' preserving
maps between stably locally compact locales as semi-proper maps. This is a good
expression since it was shown (Lemma [3.2.1]) that a locale map f : X ! Y between
stably locally compact locales is semi-proper if and only if 
f has a right adjoint
that is a preframe homomorphism.

(StLocKLoc)SP

is the category whose objects are stably locally compact locales and whose mor-
phisms are semi-proper locale maps. Banaschewski and Br�ummer's result is

(KR2Frm)op �= (StLocKLoc)SP

But we saw in Section 5.4 that

(KR2Frm)op �=KHausPos

So
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KHausPos �= (StLocKLoc)SP

The main purpose of this section is to outline a proof of this fact and to show
how this equivalence can be viewed as an extension of localic Priestley duality.
Interestingly, on objects, the proof uses exactly the same constructions as the proof
that Hausdor� systems correspond to stably locally compact locales. For:

Lemma 7.6.1 If X is a stably locally compact locales and (Y;R) is the Hausdor�

system given by BX (as in the functor B : StLocKLoc ! HausSys of Section

7.2) then (Y;R) is a compact Hausdor� poset. i.e. R is a partial order.

Proof: Recall the construction of BX . +op (J) � J 8J so R is reexive and the
+op-�xed ideals form a subframe of 
Y which is isomorphic to 
X .

Further de�ne �2 : 
Y ! 
Y by mapping any ideal J to
W"
fI jI =

W"
b2F # :b some Scott open �lter F; I �2 Jg

where

I �2 J , 9a 2 
X I ^ 
l##a = 0

J _ 
l##a = 1:

Again �2 is a preframe homomorphism and �2(J) � J 8J and so the �2-�xed

elements form a subframe isomorphic to �
X . 
Y is generated by these subframes
and from the de�nitions it is easy to check the regularity-like conditions for

(
Y;+op ��xed ideals; �2 � �xed ideals)

Consequently this last object is a compact regular biframe and so corresponds to
an object of KHausPos. 2

We have a lemma which can be read as a justi�cation for our choice of examining
the semi-proper maps:

Lemma 7.6.2 Say f : X1 ! X2 is a map between stably locally compact locales.

Then f is semi-proper i� the mapping

(
f)# : P
X2 �! P
X1

F 7�! " f
f(a)ja 2 Fg

takes Scott open �lters to Scott open �lters.

Proof: Say (
f)# maps Scott open �lters to Scott open �lters and a � b where
a; b 2 
X2. Then the set

F �" f
f(�b)ja� �bg

is a Scott open �lter. If 
f(b) �
W"

S for some S �" 
X1 then
W"

S 2 F . But F
is a Scott open �lter and so there exists s 2 S such that s 2 F . Thus 
f(a) � s.
The converse is trivial. 2

From this (and the fact that 
B(X) is generated by an image of 
X unioned
with an image of �
X) it should be clear how to de�ne a functor:

BSP : (StLocKLoc)SP �! (KR2Frm)op �= KHausPos

In the other direction we want:
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CSP : (KR2Frm)op �! (StLocKLoc)SP

This is given on objects by taking the second member of the triple ( (L0; L1; L2) 7!
L1) and is given on morphisms by restriction. The easiest way to see that this
restriction corresponds to a semi-proper locale map is by noting that for a; b 2 L1
we have

a�L1 b , a �1 b

and that �1 is preserved by any compact regular biframe map.

Clearly CSPBSP (X) �= X .

In the other direction say (L0; L1; L2) is a compact regular biframe. We know
(Theorem [7.4.1]) that L2 �= �L1 and so if IdlBL1

is the ideal completion of the
free Boolean algebra qua distributive lattice on L1 then there is an embedding of
L0 into IdlBL1

.
L0 (viewed as a subframe of IdlBL1) is the frame generated by the union of the
images of the embeddings of L1 and �L1. So

(L0; L1; L2) �= BSPCSP (L0; L1; L2)

and we have recaptured Banaschewski and Br�ummer's result that

(KR2Frm)op �= (StLocKLoc)SP

Consequently:

KHausPos �= (StLocKLoc)SP (a)

It was pointed out at the end of Chapter 5 that the classical correspondence
between compact regular biframes and compact Hausdor� posets was shown in
Priestley's paper [Pri72]. As for the classical equivalence between stably locally
compact spaces and compact regular T0 bispaces we �nd that this appears in [Sal84].
Oswald Wyler's paper `Compact ordered spaces and prime Wallman compacti�ca-
tions' ([Wyl84]) classically covers both equivalences: the stably locally compact
locales correspond to the algebras of the prime Wallman compacti�cation functor,
a fact that is also in [Sim82].

We now make a set of observations which will allow us to conclude that result
(a) above is an extension of localic Priestley duality. The category of coherent lo-
cales has as morphisms the semi-proper maps between coherent locales, CohLoc is
a full subcategory of (StLocKLoc)SP . It is certainly clear from the de�nition of
the category of ordered Stone locales that it is a full subcategory of the compact
Hausdor� posets. So it is natural to check whether the equivalence just checked (i.e.
(a)) is an extension of the equivalence between ordered Stone locales and coherent
locales as outlined in the previous chapter.

Recall that we de�ned

C : OStoneLoc �! CohLoc

by 
C(X;�) = Idl(fa 2 K
X j +op a = ag). If we can show that:

Idl(fa 2 K
X j +op a = ag) �= faj +op a = ag

then it will be clear that the equivalence KHausPos
�=
�! StLocKLoc is an exten-

sion of C : StoneLoc! CohLoc. Certainly we can de�ne a frame homomorphism:
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� : Idlfa 2 K
X j +op a = ag �! faj +op a = ag

as the unique extension of the distributive lattice inclusion

fa 2 K
X j +op a = ag ,! faj +op a = ag

and injectivety of this map clearly lifts to �.
So is � surjective? Recall that the de�nition of an ordered Stone locale (X;�)
required:

a� =
W"
f^i(ai&:bi)j ^i (ai _ :bi) = 0; ai; bi 2 K
X; +op ai = ai; +

op bi = big

Say a =+op a, then a is a directed join of elements of the form

^i(ai _ 
!(1 � :bi _ a))

where ai; bi 2 K
X and +op ai = ai;+
op bi = bi. These elements are all intersec-

tions of the directed joins:
W"

(faig [ f1j1 � :bi _ ag)

But ai; 1 2 fa 2 K
X j +op a = ag and so � is surjective.

This tells us that if KHausPos
�=
�! StLocKLoc is applied to an ordered Stone

locale then the result is a coherent locale which is isomorphic to the coherent locale
given by the Priestley duality functor C.

Similarly to our work on Priestley's duality we �nd

Lemma 7.6.3 If (Y;R) is B(X) for some stably locally compact locale X then there

is a pullback diagram:

R - v

Y � Y
?

\

k � k- X �X
?

\

where v is the specialization sublocale and 
k = 
l##.

Compare this lemma with Lemma [6.4.3].
Proof: It will be useful to have a formula for the open corresponding to R. I claim
that

aR =
W"
f^i(aiO:bi)j ^i (ai _ :bi) = 0 ai; bi 2 
Xg

(where we are taking 
X � 
Y since 
k is an injection). Notice that if this claim
is true then the result follows by a proof identical to the proof of Lemma [6.4.3].

We translate the claim into its SUP-lattice form. This reads

aR =
W
fa
 :aja 2 
Xg

De�ne @ =
W
fa
:aja 2 
Xg.

Now aR = (+op 
1)(#) and so

aR =
W"
f^i(+

op NiOMi)j ^i2I (Ni _Mi) = 0 Ni;Mi 2 
Y I �niteg

Say ^i(Ni _Mi) = 0. Then

^i(+
op NiOMi) =

W
I=J1[J2

(^i2J1 +
op Ni)
 (^i2J2Mi)
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and so we may conclude aR � @ by noting that for every pair J1; J2

(1) +op (^i2J1Ni) 2 
X
(2) ^i2J2Mi � : +op (^i2J1Ni)

where the latter is by the fact that (^i2J1Ni) ^ (^i2J2Mi) = 0 and +op� Id.
Conversely notice that if a 2 
X , taking N1 = a;M1 = 0; N2 = 0;M2 = :a proves
a
:a � aR. 2

So the antisymmetry of R can be recaptured by noting that k is a monomorphism.
Thus we don't have to use biframes in order to prove Lemma [7.6.1].

How does Priestley duality �t into out parallel? We could de�ne `Priestley
Systems' as the images under B of the coherent locales. It is not quite clear whether
these are the proper parallel to the simplest information systems (namely posets
with certain relations as morphisms). Surely the proper parallel to a poset is a
compact Hausdor� poset? But the posets correspond to the algebraic dcpos and the
compact Hausdor� posets, we have seen, correspond to the stably locally compact
locales. However the open parallel to the stably locally compact locales are the
continuous posets (or CCD locales) rather than the algebraic dcpos (or Alexandrov
locales). Perhaps the compact Hausdor� posets treated as Hausdor� systems (i.e.
maps are approximable mappings) correspond to the coherent locales? Priestley
duality would then show us that every compact Hausdor� poset is isomorphic (as
a Hausdor� system) to an ordered Stone locale. This is quickly seen to be false
since the equivalences of this chapter clearly prove that HausSys is equivalent to
the full subcategory of compact Hausdor� posets and so a hypothesis of this kind
would lead to the contradiction that the coherent locales are equivalent to the stably
locally compact locales. The author's conclusion is that we are not looking at a left
right symmetry. Recall the cube drawn at the end of Chapter 2. Algebraic dcpos
are contained within the dcpo node and coherent locales are in the Frm node; the
symmetry for these nodes is perpendicular to the preframe/SUP-lattice symmetry
that has been the subject of this thesis.
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