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Abstract

Given the category of ordered Stone spaces (as introduced by Priestley)
and the cateogry of coherent spaces (= spectral spaces) we can construct a
pair of functors

CohSp
B!"
C

OStoneSp

between the categories. Priestley [Pri70] has shown, assuming the prime ideal
theorem, that these define an equivalence. In this paper we define ordered
Stone locales. These are classically just the ordered Stone spaces. It is well
known that the localic analogue for the coherent spaces is the category of co-
herent locales. We prove, entirely constructively, that the category of coherent
locales is equivalent to the category of ordered Stone locales.

1 Introduction

The objective of this paper is to give an entirely constructive version of a
proof of Priestley’s duality:

OStoneSp∼=CohSp

where OStoneSp is the category of ordered Stone space and CohSp are
the coherent (or spectral) spaces. It seems odd to use the word ‘duality’ but
we are simply assuming that the reader is familiar with the duality

CohSp∼= Dlatop

and so we are viewing Priestley’s duality as an extension of this well known
(Stone) duality.
It is easy to construct functors between the category OStoneSp and CohSp.
Proving them to be equivalent strictly requires the prime ideal theorem. We
shall not repeat Priestley’s proof here, but we will outline how an assumption
of its conclusion implies PIT.

It would therefore appear futile to try to prove a constructive version of
this theorem. Hence we work with locales instead of spaces and find that the
localic analogue of the result is constructively valid. i.e. valid in any topos.

Classically we will see that the category of ordered Stone locales is equiva-
lent to the category of ordered Stone spaces. The localic analogue of a coher-
ent space is just a coherent locale and the classical fact that the localic and
spatial analogues are equivalent is just another way of looking at Stone duality.

The main part of this work is an entirely constructive proof that the cate-
gory of ordered Stone locales is equivalent to the category of coherent locales.
By ‘entirely constructive’ we simply mean that no use is made of the excluded
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middle or PIT. We mean Kuratowski finite when we use the word finite. Al-
though an intuitive idea of what finite means should see the reader through it
is worth noting that, informally, a Kuratowski finite set is any set for which
there exists a finite listing of the elements. Since in this constructive context
inequality is not necessarily decidable we allow repititions in our list.

The proof that ordered Stone locales are equivalent to coherent locales is
not entirely straight forward. For a start it is not immediately obvious what
a localic poset should be since the transitive rule

x ≤ y, y ≤ z ⇒ x ≤ z
cannot be easily expressed as a fact about locales since it refers to points.

Another way of stating this transitive rule is

(≤); (≤) ⊆ (≤)
where ; is relational composition. There is no clear way of defining rela-

tional composition of arbitary localic relations (=sublocales of binary products
of locales), however we find that we can define relational composition on closed
relations of compact regular locales. Once the preframe definition of the frame
of opens of a product locale is understood we are able to define a formula for
such a relational composition, and it is this formula that allows us to define
what a localic poset is (provided the locale is compact regular and the relation
is closed) and allows us to prove the equivalence of ordered Stone locales and
coherent locales.

2 Priestley Duality

This section is an attempt to explain the background problem rather than a
piece of self contained mathematical expostion. Consult Section II 4.5 - 4.9 of
Stone Spaces [Joh82] for the more detailed account upon which this exposition
is based.

An ordered Stone space is a compact topological poset which is totally
order seperated. i.e. if x %≤ y then ∃ a clopen set U such that ↑ U = U and
x ∈ U and y %∈ U . So if x %= y then they are seperated by some clopen. This
means that the space is compact and totally seperated. Hence it is Stone.
If it is Stone then it is compact Hausdorff and so a subset is closed iff it is
compact. Hence a subset is clopen if and only if it is compact open. Notice
that totally order seperated implies that ≤ is a closed subset of X ×X. And
so we see that

Lemma 2.1 If (X,≤) is a compact topological poset then it is an ordered
Stone space if and only if X is Stone, ≤ is closed and

%≤= !{U ⊗ Uc| ↑ U = U,U compact open.} !

We now turn to Priestley duality and define

B : CohSp −→ OStoneSp

(X,Ω) ,−→ (X, ‘patch’,≤)
where the ‘patch’ topology is based by

{U ∩ V c|U, V compact opens of Ω}
and ≤ is the specialization order on (X,Ω). It can be shown that

Lemma 2.2 The set of compact opens of ‘patch’ forms the free Boolean al-
gebra on the distributive lattice of compact opens of X. !
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In the other direction we have

C : OStoneSp −→ CohSp

(X,Ω,≤) ,−→ (X, {U |U ∈ Ω, ↑ U = U})
Lemma 2.3 {U |U ∈ Ω, ↑ U = U} = Idl{U |U ∈ Ω, ↑ U = U}. ( IdlA is the
set of directed subsets of A.) i.e. C(X,Ω ≤) is coherent.

In section II 4.9 of Stone Spaces [Joh82] Johnstone shows how an assump-
tion that BC defines an equivalence allows us to conclude the PIT.

Let us assume that B, C define an equivalence. We see straight away that
if a coherent space is T1 (i.e. if the specialization order ≤ is equality) then
it is Stone. But T1ness can equivalently be defined as saying that all points
are closed. For any distributive lattice A the points of the associated coherent
space are the prime ideals and the closed points are the maximal ideals. Hence
the statment of T1ness is equivalent to the statement that the maximal and
prime ideals coincide. But assuming B, C define an equivalence we know that
a coherent space is T1 if and only if it is Stone. Hence:

Lemma 2.4 (Nac49) A distributive lattice is Boolean if and only if all its
prime ideals are maximal. !

To see that this lemma implies PIT is not immediately obvious. It certainly
proves that any non-Boolean distributive lattice has a prime ideal. But any
non-trivial Boolean can be embedded into a non-trivial non-Boolean distribu-
tive lattice and so we have PIT. To see how to construct such an embedding
consult Exercise I 4.8 of Stone Spaces ([Joh82]).

3 Ordered Stone Locales

If X is a locale we write ΩX for the corresponding frame of opens. If
f : X → Y is a locale map then Ωf : ΩY → ΩX is the corresponding
frame homomorphism. If Y ! X is a closed sublocale of X then Y = ¬a
for some a ∈ ΩX. a is referred to as the open corresponding to the closed
sublocale Y .

We want to look at localic posets. i.e. pairs (X,≤) where X is a locale
and ≤ is some sublocale of X ×X. In view of the definition of ordered Stone
space we will be restricting to the case where ≤ is closed. We also want ≤ to
be a partial order. Clearly reflexivety is the statement that the diagonal (∆)
is less than ≤ in the poset of sublocales of X ×X (=Sub(X ×X)). It is well
known that Sub(X ×X) has finite meets and so the anti-symmetry axiom for
≤ is just

(≤) ∧ (≥) ≤Sub(X×X) ∆

where ≥ is the composition of ≤ with the twist isomorphism of X × X.
Finally we have the problem of transitivety. As pointed out in the introduction
we can write the transitivety axiom as

(≤); (≤) ≤ (≤)
where ; is relational composition. Also note that we only need to define

relational composition on closed relations of compact regular locales. This is
because Stone locales are compact regular and we are only examining closed
relations. We leave aside till section 4 the definition of such a relational com-
position except to note that since the compact regular locales form a regular
category we know that such a relational composition can be defined.
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We want to define OStoneLoc, the category of ordered Stone locales.
Given lemma 2.1 we clearly need to find a localic analog to the condition “a
is upper closed” where a is some open of a Stone locale X. But an open set is
upper closed iff its complement is lower closed. So we use the condition “¬a
is lower closed” to replace the spatial intuition “a upper closed”. Once we
have relational composition we can define what “¬a lower closed” means: it
is simply the statement

(≤); (¬a) ≤ (¬a) (*)

where ; is relational composition of closed sublocales. (The reader who
is worried about the fact that ¬a ! X is not a relation should note that
X ∼= X × 1 and so ¬a can be viewed as a relation on X × 1.) The spatial
intuition behind lower closure should then suffice to convince us that (*) does
define what it means for a sublocale to be lower closed.

Definition:(cf lemma (2.1)) (X,≤) is an ordered Stone locale iff X is a
Stone locale, i.e. ΩX = IdlKΩX where KΩX (= the set of compact opens
of ΩX) is Boolean, and ≤ is a closed partial order on X such that

a≤ =
"{a⊗ ¬a|a ∈ KΩX,⇓ ¬a = a}

Where ⇓ ¬a ≡≤;¬a.

We also want to define

C : OStoneLoc −→ CohSp

and it should be clear from lemma 2.3 that the choice for C will be
ΩCX = Idl{a|a ∈ KΩX,⇓ ¬a = ¬a}

Clearly we would like a formula for relational composition.

4 Relational Composition

A preframe is a poset with finite meets and directed joins such that the di-
rected joins distribute over the finite meets. It is known ([JV91]) that the
category of preframes has a tensor and that the preframe tensor of two frames
gives their coproduct. So if X,Y are two locales then

Ω(X × Y ) = ΩX ⊗ ΩY
where ⊗ is preframe tensor. A typical generator of this tensor is written

aOb (a ∈ ΩX, b ∈ ΩY ).
Some spatial intuition behind this result can be found in the following: if X,Y
are topological spaces and if for U open in X and V open in Y we define

UOV ≡ {(x, y)|x ∈ U or y ∈ V }.
Then the least subpreframe of P (X × Y ) which contains all these sets is

the product topology on X × Y .
We continue with our spatial intuition. Say X,Y,Z are spaces andR1 ⊆
X × Y,R2 ⊆ Y × Z are both closed. So Ri = ¬Ii where ¬ is set complement
and the Ii’s are open.
We want R1;R2 to be closed and so to define ; all we need define is some
function

∗ : Ω(X × Y )×Ω(Y × Z)→ Ω(X × Z)
such that R1;R2 = ¬ ∗ (I1, I2). Given the above facts about preframe

tensors it should be clear that we only need be concerned with the cases

I1 = U1OV1 I2 = V2OW2
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We know (x, z) ∈ R1;R2 iff ∃y xR1y yR2z. Hence (x, z) ∈ ∗(I1, I2) iff
∀y ¬(xR1y) ∨ ¬(yR2z). (We are only looking at the spatial case in order to
justify the choice of formula to follow and so we are at liberty to use excluded
middle.) Hence

(x, z) ∈ ∗(I1, I2) ⇔ ∀y((x, y) ∈ I1) ∨ ((y, z) ∈ I2)

⇔ ∀y(x ∈ U1 ∨ y ∈ V1 ∨ y ∈ V2 ∨ z ∈W2)

⇔ (x ∈ U1 ∨ z ∈W2) ∨ Y ⊆ V1 ∪ V2

⇔ (x, z) ∈ U1OW2 ∨ Y ⊆ V1 ∪ V2

Say now R1 ! X × Y,R2 ! Y × Z are close sublocales. Define
R1;R2 = ¬ ∗ (aR1 , aR2)

where aRi is the open corresponding to the closed sublocale Ri and ∗ :
Ω(X × Y )×Ω(Y × Z)→ Ω(X × Z) is defined on generators as

∗(a1Ob1, b2Oc2) = a1Oc2 ∨Ω!(1 ≤ b1 ∨ b2)

where ! is the unique locale map ! : X → 1, and we are viewing (1 ≤ a) as
an element of Ω.
Infact we need to factor ∗ throught ∗̄:

∗̄ : ΩX ⊗ΩY ⊗ΩZ → ΩX ⊗ ΩZ
aObOc ,→ aOc ∨Ω!(1 ≤ b)

since to make sure that we are defining a function we need to define it on all
generators of some tensor. We need to check that ∗̄ is well defined. i.e. that

(a, b, c) ,→ aOc ∨ Ω!(1 ≤ b)
is a preframe trihomomorphism. This follows from the compactness of

ΩY . Then take ∗(I1, I2) = ∗̄(#12 I1 ∨#23 I2) where the
#
’s are frame copro-

jections.

Given a closed sublocale ¬a! X and some relation ≤! X ×X then we
can find a formula for ⇓ ¬a. Assuming ≤= ¬bOc then

⇓ ¬a = ¬(b ∨ Ω!(1 ≤ c ∨ a))
It is not immediate that even if ≤ is reflexive that ¬a ≤⇓ ¬a. This will be

the case once we are sure that the diagonal is closed. For if ∆ : X ! X×X is
closed then it can be checked that it is the identity with respect to relational
composition. To see this recall that ∆ = ¬# where

# =
"↑{∧i(aiObi)| ∧i∈I (ai ∨ bi) = 0 I finite} (!!)

But we are working with Stone locales. These are compact regular and so
have closed diagonals. (Proposition III 1.3 of Stone Spaces [Joh82].)

Of course we are more familiar with the fact:

# =
"{a⊗ b|a ∧ b = 0}

and so one needs to translate this to its ‘preframe version’ (!!). In the next
section we need the ‘preframe version’ of the ordered Stone locale condtion
a≤ =

"{a⊗ ¬a|a ∈ KΩX,⇓ ¬a = a}, this is
a≤ =

"↑{∧i(aiO¬bi)| ∧i∈I (ai ∨ ¬bi) = 0 ai, bi ∈ KΩX,⇓ ¬ai = ai,
⇓ ¬bi = ¬bi, I finite}
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5 Localic Priestly Duality

Given lemma (2.2) it is clear that the localic part of

B : CohLoc −→ OStoneLoc

should be the Stone locale whose frame of opens is the ideal completion of
the free Boolean algebra on the distributive lattice of compact opens of the
domain locale. So

BX = (BX,≤BX)

where ΩBX = IdlBX where BX is the free Boolean algebra on the dis-
tributive lattice KΩX. Note that there is a distributive lattice inclusion of
KΩX into BX which induces a locale map lX : BX → X. Since BX is the
free Boolean algebra on KΩX we can prove that lX is monic.
We define ≤BX by

a(≤BX ) =
"↑{∧i(aiO¬bi)| ∧i∈I (ai ∨ ¬bi) = 0 ai, bi ∈ KΩX I finite}

Notice that a(≤BX) ≤ # and so

∆ ≤Sub(X×X) (≤BX).

Hence ≤BX is reflexive. Antisymmetry for ≤BX can also be checked, but
the proof is slightly more involved:

Lemma 5.1 ≤BX is antisymmetric.

Proof: We need to prove that (≤BX) ∧ (≥BX)
(p1,p2)
! BX × BX is the

diagonal. We may conclude this provided we check that its right hand projec-
tion is equal to its left hand projection. i.e. p1 = p2. As a statement about
frames this reads

Ω(π1)(I) ∨ a≤ ∨ a≥ = Ω(π2)(I) ∨ a≤ ∨ a≥ ∀I ∈ IdlBX

But we only need worry about compact Is. i.e. we may assume I =
a ∈ BX . In such a case Ωπ1I = aO0, Ωπ2I = 0Oa. Finally note that
we may further restrict to the case that a ∈ KΩX. This is because lX is a
monomorphism.
Hence we need

aO0 ∨ a≤ ∨ a≥ = 0Oa ∨ a≤ ∨ a≥ ∀a ∈ KΩX
Before proof note that for any a ∈ KΩX since (a ∨ 0) ∧ (0 ∨ ¬a) = 0 we

have that

a≤ = a≤ ∨ [(aO0) ∧ (0O¬a)] (I)

a≥ = a≥ ∨ [(¬aO0) ∧ (0Oa)] (II)

Hence for any a ∈ KΩX
aO0 ∨ a≤ ∨ a≥ = a≤ ∨ [[a≥ ∨ (¬aO0) ∨ (aO0)] ∧ [a≥ ∨ (aOa)]] by (II)

= a≤ ∨ a≥ ∨ (aOa)
0Oa ∨ a≤ ∨ a≥ = a≥ ∨ [[a≤ ∨ (aOa)] ∧ [a≤ ∨ (0O¬a) ∨ (0Oa)]] by (I)

= a≤ ∨ a≥ ∨ (aOa) !

Once the following lemma is checked then it is easy to see that not only
will ≤(BX) satisfy the ordered Stone locale condition but also for any coherent
locale X we have CBX ∼= X:
Lemma 5.2 If BX is the free Boolean algebra on the distributive lattice of
compact opens KΩX of some coherent locale X and if ⇓ is the lower closure
operation on closed sublocales induced by the order ≤BX then for any a ∈ BX

we have
a ∈ KΩX if and only if ⇓ ¬a = ¬a
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Proof: Since ≤BX is reflexive all we need to show is ∀a ∈ BX

⇓ ¬a ≤ ¬a ⇔ a ∈ KΩX
Now

a(≤BX ) =
"↑{∧i(aiO¬bi)| ∧i∈I (ai ∨ ¬bi) = 0 ai, bi ∈ KΩX I finite}

and so

⇓ ¬a = ¬("↑{∧i(ai ∨Ω!(1 ≤ a ∨ ¬bi))| ∧i∈I (ai ∨ ¬bi) = 0,
ai, bi ∈ KΩX I finite})

Hence if a ∈ KΩX take I = {1, 2} and
a1 = a b1 = 1

a2 = 0 b2 = ¬a

to see that ⇓ ¬a ≤ ¬a.

Conversely say ⇓ ¬a ≤ ¬a. Then
a ≤ "↑ ∧i(ai ∨Ω!(1 ≤ a ∨ ¬bi)

where the join is over finite collections of ai, bis inKΩX such ∧i(ai∨¬bi) =
0. But a is a compact open and so ∃ a finite set I such that

∧i∈I(ai ∨ ¬bi) = 0

and

a ≤ ai ∨Ω!(1 ≤ a ∨ ¬bi) ∀i ∈ I
and the ai, bis are all in KΩX. However it can be seen that

ai ∨Ω!(1 ≤ a ∨ ¬bi) =
"↑({ai} ∪ {1|1 ≤ a ∨ ¬bi})

and so, using compactness of a again, we find that there are finite sets
J1, J2 ⊆ I with I = J1∪J2 such that a ≤ ai ∀i ∈ J1 and 1 ≤ a∨¬bi ∀i ∈ J2.
i.e.

a ≤ ∧i∈J1ai and ∨i∈J2bi ≤ a
The finite distributivety law allows us to prove

∧i(ai ∨ ¬bi) =
"
[(∧i∈K1ai) ∧ (∧i∈K2¬bi)] (!)

where the join is over all pairs K1,K2 ⊆ I such that K1,K2 are finite and
I = K1 ∪K2. Hence

(∧i∈J1ai) ∧ (∧i∈J2¬bi) = 0
i.e. ∧i∈J1ai ≤ ∨i∈J2bi

Hence a = ∧i∈J1ai ∈ KΩX. !

Lemma 5.3 ≤BX is transitive.

Proof: To prove transitivity of ≤BX it is clearly sufficient to show that
for any finite collection of ai, bis in KΩX with ∧i(ai ∨ ¬bi) = 0 we have

∧i(aiO¬bi) ≤ "↑ ∧( ī, i)[(āīO¬bi) ∨Ω!(1 ≤ ai ∨ ¬b̄ī)]

where the join is over all finite collections (āī, b̄ī )̄i∈Ī of elements of KΩX
such that ∧Ī(āī ∨ ¬b̄ī) = 0
But ¬ai is lower closed by the last lemma since ai ∈ KΩX and so

ai =
"↑ ∧ī(aī ∨Ω!(1 ≤ ai ∨ ¬b̄ī))
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and since
"↑ and finite meets commute in the theory of preframes (and O

commutes with
"↑ and finite meets in the appropriate way) we see that

∧i(aiO¬bi) =
"↑ ∧(i,̄i)((āīO¬bi) ∨Ω!(1 ≤ ai ∨ ¬b̄ī)) !

So finally all we do is check that BC(Y ) ∼= Y for all Y ∈ OStoneLoc. We
know that there is a distributive lattice inclusion,

{a ∈ KΩY | ⇓ ¬a = ¬a} "→ KΩY

but is it universal? If we can show this then the fact that for any ordered
Stone locale (Y,≤Y ) we have

a≤Y =
"↑{∧(aiO¬bi)| ∧i (ai ∨ ¬bi) = 0, ai, bi ∈
KΩY ⇓ ¬ai = ¬ai,⇓ ¬bi = ¬bi}

allows us to conclude

≤Y=≤BC(Y ) .

Thus we will be finished provided we can check the universality of the
above inclusion. Assume a diagram

KC(Y ) ⊂ ! KΩY

#
#
#
#

f
$

B

φ

%

.................

where f is a distributive lattice homomorphism and B is a Boolean algebra.
Say a ∈ KΩY and we have found two finite sets of elements {ai, bi|i ∈ I} ,
{āī, b̄ī |̄i ∈ Ī} such that ∧i(ai ∨ ¬bi) = a = ∧ī(āī ∨ ¬b̄ī). (Where the ai, bi, āī, b̄ī’s
are in {a ∈ KΩY | ⇓ ¬a = ¬a}). We want to check,

Lemma 5.4 ∧i(fai ∨ ¬fbi) = ∧ī(fāī ∨ ¬f b̄̄i)

(For then it will be ‘safe’ to define φ(a) = ∧i(fai∨¬fbi) for any {ai, bi|i ∈ I}⊆
KC(Y ) such that a = ∧i(ai ∨ ¬bi)
Proof: To conclude that ∧i(fai ∨ ¬fbi) ≤ ∧ī(fāī ∨ ¬f b̄̄i) we need to prove
that for every ī and for every pair J1, J2 ⊆ I with I ⊆ J1 ∪ J2 we have

(∧i∈J1fai) ∧ (∧i∈J2¬fbi) ≤ (fāī ∨ ¬f b̄̄i)

To see this apply the finite distributivety law (!) of lemma 5.2 to the meet
∧i(fai ∨ ¬fbi). But the last inequality can be manipulated to

f((∧i∈J1ai ∧ b̄̄i) ∨ ∨i∈J2bi) ≤ f((āī ∧ b̄̄i) ∨ (∨i∈J2bi))

and the fact that (∧i∈J1ai ∧ b̄ī) ∨ ∨i∈J2bi ≤ (āī ∧ b̄ī) ∨ (∨i∈J2bi) follows
from exactly the same manipulations applied to the assumption

∧i(ai ∨ ¬bi) ≤ ∧ī(āī ∨ ¬b̄ī) !

It also follows (given the assumption that ∀a ∈ KΩY ∃{ai, bi|i ∈ I} ⊆
KCY s.t. ∧i(ai ∨ ¬bi) = a) that φ will be a (necessarily unique) Boolean
homomorphism. [ For if a = ∧i∈I(ai ∨ ¬bi) and ā = ∧i∈Ī(ai ∨ ¬bi) ⇒
a ∧ ā = ∧I∪Ī(ai ∨ ¬bi). So

φ(a ∧ ā) = ∧I∪Ī(fai ∨ ¬fbi)

= [∧i∈I(fai ∨ ¬fbi)] ∧ [∧i∈Ī(fai ∨ ¬fbi)]

= φ(a) ∧ φ(ā)

Similarly for ∨ ]
We also have the following Boolean algebra lemma:
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Lemma 5.5 If I, Ī are finite sets and {ai, bi|i ∈ I} and {āī, b̄ī |̄i ∈ Ī} are sets
of elements of some Boolean algebra B, and ∧i(ai∨¬bi) = 0,∧ī(āī∨¬b̄ī) = 0.
Then for any J1, J2 ⊆ I × Ī such that I × Ī ⊆ J1 ∪ J2 we have

∧(i,̄i)∈J1
(ai ∨ ¬b̄̄i) ≤ ∨(i,̄i)∈J2

(¬āī ∧ bi)

Proof: The conditions imply:

[∧(ai ∨ ¬bi)] ∨ [∧(āī ∨ ¬b̄ī)] = 0

⇒ ∧(i,̄i)∈I×Ī [ai ∨ ¬bi ∨ āī ∨ ¬b̄ī] = 0

⇒ ∨I×Ī⊆J1∪J2
[(∧(i,̄i)∈J1

(ai ∨ ¬b̄ī)) ∧ (∧(i,̄i)∈J2
(āī ∨ ¬bi))] = 0

⇒ (∧(i,̄i)∈J1
(ai ∨ ¬b̄ī)) ∧ (∧(i,̄i)∈J2

(āī ∨ ¬bi)) = 0

The result follows since

¬(∧(āī ∨ ¬bi)) = ∨(¬āī ∧ bi)

!

We can now prove our assumption:

Theorem 5.1 If (Y,≤) is an ordered Stone locale and a ∈ KΩY then a =
∧i∈I(ai ∨ ¬bi) for some finite I with ai, bi ∈ KΩY and ⇓ ¬ai = ¬ai,
⇓ ¬bi = ¬bi.

Proof: Clearly the anti-symmetry axiom must now come into play. This
axiom states that

(≤) ∧ (≥) ≤Sub(X×X) ∆

which as a statment about opens of Ω(X ×X) reads:
a≤ ∨ a≥ ≥ #

But a = ∗(#, a) since ¬# is the identity for relational composition. Thus

a ≤ (a≤ ∨ a≥) ∗ a (I)

From our axioms used to define ‘ordered Stone locale’ we know,

a≤ = ∨↑{∧i(aiO¬bi)| ∧i (ai ∨ ¬bi) = 0 ai, bi ∈ KΩY ⇓ ¬ai = ¬ai

⇓ ¬bi = ¬bi}
Symmetrically

a≥ = ∨↑{∧ī(¬b̄̄iOāī)| ∧ī (āī ∨ ¬b̄ī) = 0 āī, b̄ī ∈ KΩY ⇓ ¬āī = ¬āī

⇓ ¬b̄ī = ¬b̄ī}
Thus a≤ ∨ a≥ is a directed union of elements of the form

[∧i(aiO¬bi)] ∨ [∧ī(¬b̄īOāī)]

= ∧(i,̄i)∈I×Ī [(aiO¬bi) ∨ (¬b̄īOāī)]

= ∧(i,̄i)∈I×Ī [(ai ∨ ¬b̄ī)O(¬bi ∨ āī)]

Since a is compact and ( ) ∗ a preserves directed joins and finite meets we see
from (I) that

a ≤ ∧(i,̄i)∈I×Ī([(ai ∨ ¬b̄ī)O(¬bi ∨ āī)] ∗ a)
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for some {ai, bi|i ∈ I}, {āī, b̄ī |̄i ∈ Ī} such that ∧i(ai ∨ ¬bi) = 0,∧ī(¬b̄ī ∨
āī) = 0 and ⇓ ¬ai = ¬ai,⇓ ¬bi = ¬bi,⇓ ¬āī = ¬āī,⇓ ¬b̄ī = ¬b̄̄i. Now

[(ai ∨ ¬b̄ī)O(¬bi ∨ āī)] ∗ a
= (ai ∨ ¬b̄ī) ∨Ω!(1 ≤ ¬bi ∨ āī ∨ a)
= ∨↑[{ai ∨ ¬b̄ī} ∪ {1|bi ∧ ¬āī ≤ a}]

We see from the compactness of a that there are two finite sets J1, J2,⊆ I× Ī
such that

I × Ī ⊆ J1 ∪ J2

and

a ≤ ∧(i,̄i)∈J1
(ai ∨ ¬b̄ī)

∨(i,̄i)∈J2
(¬āī ∧ bi) ≤ a

But by the last lemma

∧(i,̄i)∈J1
(ai ∨ ¬b̄̄i) ≤ ∨(i,̄i)∈J2

(¬āī ∧ bi)

and so a = ∧(i,̄i)∈J1
(ai ∨ ¬b̄ī) !

6 Morphisms and final remarks

Clearly some spatial intuitions have been lost in this exposition in an attempt
to prove the result as quickly as possible. Foremost we have not given any
justification for the choice of ≤BX other than “it works”. Infact ≤BX is the
pullback of the specialization order along lX × lX . Antisymmetry of ≤BX thn
follows immediately since lX is monic and meets are pullback stable.

We say f : (X ≤X) → (Y,≤Y ) is an ordered Stone locale map iff it
“preserves order”. i.e. if and only if ∃n :≤X→≤Y such that

≤X
n ! ≤Y

X ×X
%

∩

f × f! Y × Y
%

∩

commutes.
However for this definition to fit in with the algebra of the paper we need to
translate it. We find that f : (X ≤X) → (Y,≤Y ) is an ordered Stone locale
map if and only if (it is a locale map from X to Y and)

Ωf ⇓op (a) ≤⇓op Ωf(a) ∀a ∈ ΩY
where ⇓op is lower closure viewed as an operation on the corresponding

opens. i.e. ⇓ ¬a = ¬ ⇓op a ∀a.

For further information about this work consult [Tow96].
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