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Abstract

It is shown that a particular categorical axiomatisation of the category
of locales is slice stable. This localic slice stability can be used to recover
the fundamental theorem of topos theory. A categorical account of the
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of Joyal and Tierney’s result on the slice stability of locales.
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1 Introduction

An axiom, placed on a category C, is said to be slice stable if whenever it is
satisfied by C it is also satisfied by the slice category C/X for every object X of C.
The easiest example is the axiom of having finite limits (i.e. being cartesian); if
C has finite limits then so too does C/X for any object X of C. A non-example
is the axiom of having finite products since there are examples of categories
that have finite products but not equalizers. The fundamental theorem of topos
theory, e.g. A2.3 of [J02], is the assertion that the axioms of an elementary
topos are slice stable.

The category of locales, Loc, enjoys the property,

LocSh(Y ) ' Loc/Y

for any locale Y , where Sh(Y ) is the topos of sheaves over Y , [JT84]. So any
fact about the category of locales that can be proved within a topos is true of
any slice of the category of locales. Since most of the results of locale theory
are provable using only intuitionistic logic and so can be proved in any topos,
this applies to most of locale theory. From this we intuitively know that the
category of locales is slice stable (‘logically’ slice stable say). Slice stability
in the literature invariably refers to this logical slice stability. However what
is missing is a set of axioms for the category of locales which is slice stable.
Whilst axiomatic approaches have been developed (see [T04], [T05] or [T06];
and also [V95] and [Tay00] for not unrelated techniques) these approaches are
not shown to be slice stable. The main result of this paper is to show that the
axiomatic accounts of locale theory developed in [T04], [T05] and [T06] are all
slice stable with only trivial modifications (these trivial modifications do not
effect the results available and so do not constitute a weakening of the theory).

Two applications are given. Firstly we reprove the fundamental theorem of
topos theory as a consequence of this slice stability. Secondly we exploit slice
stability to reprove LocSh(Y ) ' Loc/Y so showing that the familiar logical
slice stability of locale theory is an aspect of axiomatic slice stability. We are
able to prove this second result with no significant use of topos theoretic ma-
chinery as we do not have to develop set theoretic constructions internal to a
topos of sheaves. However we will assume familiarity with the well understood
relationship

Sh(Y ) ' LH/Y

that is central to sheaf theory (here LH/Y is the category of local homeomor-
phisms over Y ). The hope therefore is to make Joyal and Tierney’s result on the
slice stability of locales more accessible to sheaf theorists (albeit at the expense
of a fairly involved discussion of various categorical aspects of locale theory).

This paper does not focus on the relationship between the categorical axioms
discussed and their canonical model (the category locales). Therefore it does
not provide much detail on the general topological motivation that underpins
the work; however such motivation can be found in the literature, e.g. [J82] and
[Vic 89]. For motivation on categorical approaches to topology/locale theory
consult for example [V95] and [Tay00].
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1.1 Outline contents

We begin by making some comments on lattices internal to order enriched cat-
egories and recalling categorical change of base. This change of base technique
can be described under mild categorical assumptions and is central to nearly all
of the proofs in the rest of the paper.

Next we recall the axioms to be discussed and show that they are slice stable.
The key technical result is a proof that the axiomatic representation of the
double coverage theorem (introduced in [VT04]) is slice stable. The discussion
then focuses on the power monads and we show that certain properties of these
monads are, in the presence of the other axioms, slice stable. This allows us to
conclude that all of the results of [T04] and [T05] are slice stable.

In particular we can then conclude that the Hofmann-Mislove theorem (a
categorical account of which is the main result of [T05]) is slice stable. As an
application of this we prove axiomatically the known result that discrete objects
are exponentiable and show how the isomorphism implicit in this observation
can be described using relational composition. With this categorical description
of relational composition we are able to introduce axiomatically the ideal com-
pletion of a preorder. We check that this construction has the right properties
and that it agrees with the more general construction given in [T05]. When
acting on semilattices we show that the ideal completion construction is func-
torial. Although the results contained within this section are just basic aspects
of lattice theory the section is long. This is because we are no longer working
within set theory but are reliant on a categorical axiomatisation and so every
step is a categorical manipulation rather than a more familiar set theoretic one.

The next section consists of applications. It gives two proofs using the tech-
niques developed; firstly of the fundamental theorem of topos theory and sec-
ondly of the Joyal and Tierney result on slice stability (i.e. LocSh(Y ) ' Loc/Y ).
The fundamental theorem of topos theory becomes a categorical triviality since
every topos, E , is equivalent to the category of discrete locales over E .

The proof of LocSh(Y ) ' Loc/Y is a bit more involved. Firstly we note that
the category Sh(Y ) can be expressed axiomatically using local homeomorphisms
in the usual manner. Next the proof centres on a verification that, in the slice
over any locale Y , the ideal completion of local homeomorphisms (that are also
internal semilattices) has a right adjoint which, in fact, is monadic. The proof
is then completed with a verification that the induced monad is the downset
monad whose algebras are exactly frames in Sh(Y ).

The final section is a summary section which also contains a table of the
axioms together with some comments on them, for example noting known de-
pendencies. An appendix is included that contains a proof that a particular
axiom (used only in [T06] and not used for the results of this paper) is slice
stable.
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2 Categorical background

2.1 Order enriched categories

Our category C, to be axiomatised, is order enriched. Let us start by making a
few general comments about order enriched categories. Firstly it must be noted
that when limits or any other universal constructions are discussed relative to
an order enriched category it is assumed that they are order enriched; that is,
establish order isomorphisms on the relevant partially ordered homsets rather
than just bijections. For example if C has binary products then it is assumed
that the function

C(Z,X × Y )
(π1◦( ),π2◦( ))−→ C(Z, X)× C(Z, Y )

is an order isomorphism and not just a bijection.
In an order enriched category with finite products we will invariably discuss

order internal meet (or join) semilattices. These are just ordinary internal semi-
lattices but with the further requirement that the join(meet) map is left(right)
adjoint to the diagonal and that the unit is left(right) adjoint to the nullary
diagonal (i.e. the unique map to 1). Therefore for an object X in an order
enriched category we have that there is at most one order enriched join or meet
semilattice structure on it; this is by uniqueness of adjoints.

An order enriched functor F : C → D between order enriched categories C
and D is just an ordinary functor but with the additional property that F , on
morphisms, is monotone. To prove that F preserves order internal join or meet
semilattices it is sufficient to check that it preserves products. Note that for
any particular order internal join or meet semilattice, X say, it just needs to
be checked that F preserves ∆X : X → X × X and !X : X → 1 in order to
conclude that F (X) is an order internal join or meet semilattice.

Let us comment on the presheaf categories of order enriched categories.
Central to the axiomatic system to be discussed is the interaction between C and
its presheaf category [Cop,Set]. However if C is order enriched then [Cop,Set]
does not have a natural ordering on all of its homsets. There are two ways
round this problem: (i) develop the theory relative to the order enriched category
[Cop,Pos] where Pos is the category of posets or (ii) note that in practice for
all the presheaves that we are concerned with the homsets between them do in
fact have a natural ordering and so are posets. The first option is viable and
in fact all the axioms do hold with [Cop,Pos] in place of [Cop,Set]. However
we have chosen to stick with the more familiar [Cop,Set] for this exposition as
this avoids the need to re-check the axioms in the slightly different context of
an order enriched presheaf category.

Finally we make some observations about internal semilattices in [Cop,Set].
Say X and Y are objects of an order enriched cartesian category C. Consider
the presheaf

Cop → Set

Z 7−→ C(Z × Y,X).
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The notation XY is used for this presheaf since it can be verified that XY is the
exponential C( , X)C( ,Y ) in the category [Cop,Set]. If X is an order internal join
semilattice in C then XY is an internal join semilattice in [Cop,Set]. Now the
homsets [XY , XY ×XY ], [XY ×XY , XY ], [1, XY ] and [XY , 1] are all posets as
they inherit an ordering from C and it can be seen that the binary and nullary
join maps on XY are left adjoint to the binary and nullary diagonal maps in
[XY , XY × XY ] and [XY , 1] respectively. Therefore to prove that a functor
F : [Cop,Set] → [Dop,Set] preserves the semilattice structure on XY we have
but to check that it preserves the ordering on these homsets and the diagonal
maps. We shall apply this reasoning below to specialise our categorical change
of base result which is the subject of the next section.

2.2 Categorical change of base

The work below is going to rely on categorical change of base, [T04]. Since
the main lemma relevant to this can be stated under very mild categorical
assumptions and is easy to prove, it seems appropriate to start with this aspect.
We first assume an order enriched cartesian category C with some distinguished
object S.

Let X be an object of C. We use SX to denote π2 : S×X → X, an object of
the slice C/X. Then,

Lemma 2.2.1. For any morphism f : X → Y of C, define

f# : [(C/Y )op,Set] → [(C/X)op,Set]

by precomposition with Σf and define

f∗ : [(C/X)op,Set] → [(C/Y )op,Set]

by precomposition with f∗. Then f# a f∗ and for any objects A, B of C/X,
C/Y respectively we have

f#SB
Y
∼= Sf∗B

X

and
f∗SA

X
∼= SΣf A

Y .

Further there is a natural order isomorphism between the sets of natural trans-
formations,

[Sf∗B
X , SA

X ] ∼= [SB
Y , SΣf A

Y ],

ordered pointwise in the obvious manner.

Here standard notation for the pullback adjunction Σf a f∗ : C/X → C/Y
is being used.

Proof. To see that f# a f∗ observe that the unit and counit of Σf a f∗ can be
used to define natural transformations f#f∗F −→ F for each F : (C/X)op →
Set and f∗f#G −→ G for each G : (C/Y )op → Set. But the induced natural
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transformations f#f∗ → Id and f∗f# → Id can be seen to satisfy the trian-
gular identities for f#and f∗ (since the counit and unit of Σf a f∗ satisfy the
triangular identities for f∗ and Σf ) and so f# a f∗.

Both f#SB
Y
∼= Sf∗B

X and f∗SA
X
∼= SΣf A

Y are immediate since

C/Y (B × ΣfA,SY ) ∼= C/X(f∗B ×A, SX)

holds for every A in C/X and every B in C/Y .

The following lemma will be used in our main technical result on the slice
stability of Axiom 4 (to follow). It is essentially an exercise in the definition of
f# and f∗ just given.

Lemma 2.2.2. For any W
l→ Y , a morphism of an order enriched cartesian

category C with some distinguished object S, and for any natural transformation
α : SA

Y → SB
Y with objects A and B of C/Y and any object X of C we have that

[W∗l#(α)]X = αΣlW∗X

and
αWl

= [W∗l#(α)]1.

Note we are using Wl as notation for the object l : W → Y of C/Y . Further
note that we are, of course, using the notation ΣW and W ∗ for the pullback
adjunction C/W À C and are using W# a W∗ (rather than (!W )# a!W∗ ) for the
extension to natural transformations.

Proof. In summary the proof is about unwinding the definition of the extensions
of the functors ΣW and l∗ to natural transformations.

Firstly consider some natural transformation γ : SC
W → SD

W , then [W∗(γ)]X
for any object X of C is defined by

C(X × ΣW (C), S) ∼= C/W (W ∗X ×W C, SW )
γW∗X−→ C/W (W ∗X ×W D, SW ) ∼= C(X × ΣW (D),S).

I.e. [W∗(γ)]X = γW∗X .
Secondly, for α : SA

Y → SB
Y and for any object E of C/W , [l#(α)]E is defined

by

C/W (E ×W l∗A, SW ) ∼= C/Y (ΣlE ×Y A,SY )
αΣlE−→ C/Y (ΣlE ×Y B, SY ) ∼= C/W (E ×W l∗B, SW ).

I.e. [l#(α)]E = αΣlE . Combining these we get the first claim. For the second
claim note that ΣlW

∗1 = Wl.

We now discuss a sharpening of Lemma 2.2.1 for situations where the addi-
tional assumption is made that S is an order internal join semilattice. Certainly
then SΣf ( )

Y transforms SA
X into an order internal join semilattice in [C/Y op,Set]
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as the lemma shows it is (a restriction of) a right adjoint. We would like to con-
clude, moving in the opposite direction, that Sf∗( )

X transforms any SB
Y into a join

semilattice in [C/Xop,Set]. If h∗ : C/W → C/Z preserves finite coproduct (for
every morphism h : Z → W ) then this is the case since then SB

Y × SB
Y
∼= SB+B

Y

and Sf∗(B+B)
X

∼= Sf∗B+f∗B
X

∼= Sf∗B
Y ×Sf∗B

Y , showing that Sf∗( )
X preserves binary

product (nullary product is similar). In summary,

Proposition 2.2.3. If C is a cartesian order enriched category with finite co-
products such that pullback preserves finite coproducts then for any order internal
join semilattice S, any f : X → Y and any A and B objects of C/X and C/Y
respectively,

(i) SΣf ( )
Y takes tSA

X
to tSΣf A

Y

(and similarly nullary join),

(ii) Sf∗( )
X takes tSB

Y
to tSf∗B

X
(and similarly nullary join), and;

(iii) the order isomorphism between natural transformations of Lemma 2.2.1
specialises to natural transformations that are join semilattice homomorphisms.

Proof. (i) and (ii) are covered in the preamble. For (iii) note that the unit and
counit of the adjunction in the lemma are

SB
Y

SεB
Z→ SΣf f∗B

Y

and

Sf∗Σf A
X

SηA
X→ SA

X ,

respectively, where η and ε are the unit and counit of the adjunction Σf a f∗.
But both these maps are internal join semilattice homomorphisms and so (iii)
is clear as (i) and (ii) show that Sf∗( )

X and SΣf ( )
Y , on morphisms, preserve the

property of being an internal join semilattice homomorphism.

Of course an identical discussion could have been had about order internal
meet semilattices.

3 The axioms

3.1 Basic axioms

We now state various axioms that can be placed on a category C and show that
they are slice stable. They are all stable under the order enrichment which
means that the theory developed has an implicit order enriched duality. The
axioms are all true when C = Loc and are used in [T04] and [T05] to develop
various aspects of locale theory.

Axiom 1. C is an order enriched category with finite limits and finite
colimits.

It has been commented on above that the property of being cartesian is slice
stable. It is similarly trivial that the property of being cocartesian is slice stable.
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Axiom 2. For any objects A,B and C in C/Z, A×(B+C) ∼= A×B+A×C.
Further A× 0 ∼= 0.

This axiom is about all slices and so is, by definition, a slice stable axiom.
It is equivalent to the assertion that for any morphism f : X → Y of C, the
pullback functor f∗ : C/X → C/Y preserves finite coproducts. (I have not
been able to exhibit a category that is distributive for which this axiom fails.
Although it is surely know whether distributivity is sufficient for Axiom 2, it
has not proved possible here to establish this either way.)

Axiom 3. There is an order internal distributive lattice, denoted S, such
that given a pullback

a∗(i) → 1
↓ ↓ i

X
a→ S

a is uniquely determined by a∗(i) ↪→ X for i : 1 → S equal to either 0S or 1S.
Such an S is called a Sierpiński object. If S is a Sierpiński object in C then

for any object Z of C it is easy to verify that SZ is a Sierpiński object of C/Z
so the axiom is slice stable. It can be shown, [T04], that this axiom implies, for
any object Z of C and any morphism α : SZ → S,

(i) uS (α× IdS) v α uSZ (IdSZ × S!Z ); and

(ii) α tSZ (IdSZ × S!Z ) v tS(α× IdS).

It is these last two inequalities which are sufficient to develop certain aspects of
locale theory and so are taken as axioms in [T05] rather than our Axiom 3.

Capturing the usual localic notion we have:

Definition 3.1.1. A monomorphism X0 ↪→ X is an open subobject if it is
the pullback of 1S : 1 → S and it is a closed subobject if it is the pullback of
0S : 1 → S.

It is shown in [T04] that this axiom establishes an order isomorphism between
open subobjects of X and morphisms X → S; in particular to prove that a v b

for a, b : X → S it is sufficient to prove that for any morphism Z
p→ X if p

factors via a∗1 then p factors via b∗1.
Although in locale theory the Sierpiński locale can be defined categorically

(for example as the initial order internal distributive lattice, or as the categorical
tensor 1⊗2 where 2 is the external poset {0 ≤ 1}) it is not the case that Axiom
3 determines an object unique up to isomorphism. To see this note that the
terminal object always satisfies Axiom 3. However this lack of uniqueness makes
no difference to the development of the theory to follow.

The next axiom is a categorical interpretation of the content of the double
coverage theorem introduced in [VT04].

Axiom 4. For any equalizer diagram

E
e

↪→ X

f→
→
g

Y
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in C the diagram

SX × SX × SY
u(1×t)(Id×Id×Sf )−→

−→
u(1×t)(Id×Id×Sg)

SX Se

→ SE

is a coequalizer in the full subcategory of [Cop,Set] consisting of all objects of
the form SW .

Here u(1× t) is the composite

SX × SX × SX 1×t−→ SX × SX u→ SX .

Our main technical result for this paper is a proof that this axiom is slice stable.

Proposition 3.1.2. Assuming Axioms 1-3, Axiom 4 is slice stable.

Proof. Say E
e

↪→ X1

h1→
→
h2

X2 is an equalizer diagram in C/Y , we must show that

for any α : SX1
Y → SZ

Y for which

α u (1× t)(Id× Id× Sh1
Y )

= α u (1× t)(Id× Id× Sh2
Y ) Eqn 1.

there exists unique β : SE
Y → SZ

Y such that βSe
Y = α. The first thing to note is

that by application of the change of base proposition above we can assume that
Z = 1 (recall that change of base preserves Sierpiński meet and join; Proposition
2.2.3).

So say we are given α : SX1
Y → SY satisfying Eqn 1. To define β : SE

Y → SY

we must, for every l : W → Y , define a map

C/Y (E ×Y Wl, SY )→C/Y (Wl, SY ).

Since C/Y (E ×Y Wl, SY ) ∼= C(E ×Y W,S) and C/Y (Wl, SY ) ∼= C(W,S) this
amounts to defining a map

C(E ×Y W,S)→C(W,S)

for each l : W → Y . Now if α satisfies Eqn 1 then W∗l#(α) satisfies

(W∗l#(α)) u (1× t)(Id× Id× Sh1×Id)
= (W∗l#) u (1× t)(Id× Id× Sh2×Id).

since, again by change of base, the extended functors W∗ and l# preserve the
Sierpiński meet and join. Therefore, by Axiom 4, there exists a unique natural
transformation γWl : SE×Y W → SW such that γWlSe×Id = W∗l#(α).

We define β : SE
Y → SY by βWl

≡ [γWl ]1. The construction of β from α is
monotone so to complete the proof it remains to verify,

A. that β is natural,
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B. βSe
Y = α; and,

C. if δSe
Y = α for some other natural transformation δ : SE

Y → SY then
δ = β.

Proof of A. Say n : Wl → Vm is a morphism in C/Y then by the first part
of the lemma the square

SV×Y X1
ΣV n∗(α)−→ SV

Sn×Id ↓ ↓ Sn

SW×Y X1
ΣW l∗(α)−→ SW

commutes by naturality of α. However ΣV n∗(α) factors as γVnSe×Id and
ΣW l∗(α) factors as γWlSe×Id and since Se×Id is an epimorphism we can conclude
that

SV×Y E γVn−→ SV

Sn×Id ↓ ↓ Sn

SW×Y E γWl−→ SW

commutes. By applying these natural transformations at 1 we therefore obtain
the fact that β is natural.

Proof of B. By the lemma, for any Wl, αWl
= [ΣW l∗(α)]1 = [γWlSe×Id]1 =

[γWl ]1[Se×Id]1 = βWl
[Se

Y ]Wl
.

Proof of C. For such a δ, for any Wl, ΣW l∗(α) = ΣW l∗(δ)Se×Id, by applying
ΣW l∗ to the triangle δSe

Y = α. It follows that ΣW l∗(δ) = γWl by the uniqueness
part of Axiom 4. But by the lemma δWl

= [ΣW l∗(δ)]1 = [γWl ]1 = βWl
and so

we are done.

Axiom 5. The map S( ) : C → [Cop,Set], reflects isomorphisms.
Given Axiom 4, Axiom 5 implies that S( ) is faithful. To see this note that

if g1 and g2 are two morphisms with Sg1 = Sg2 then Se is an isomorphism by
Axiom 4, where e is the equalizer of g1 and g2. This is sufficient to show that
g1 = g2 as e is therefore an isomorphism in the presence of Axiom 5.

For slice stability of Axiom 5, say Sf
Y : SWl

Y → SVm

Y is an isomorphism in
[(C/Y )op,Set], for some morphism f of C/Y . Then ΣY (Sf

Y ), i.e. Sf : SW → SV ,
is an isomorphism in [Cop,Set] and so f is an isomorphism in C by the axiom.
Therefore there exists g : W → V such that gf = IdV and gf = IdW . It
must just be checked that g is a morphism of C/Y , i.e. that mg = l. As f is a
morphism of C/Y we gave lf = m. Therefore mg = lfg = l and we are done.

In [T05] a (not necessarily strict) strengthening of Axiom 5 is exploited so
for completeness this is included here.

Axiom 5′. Any internal distributive lattice homomorphism α : SY → SX is
of the form Sf for unique f : X → Y .

Proposition 3.1.3. Given Axioms 1-4, Axiom 5′ is slice stable.

Proof. Say α : SWl

Y → SVm

Y is an internal distributive lattice homomorphism.
By change base to V , we obtain α̂ : Sm∗Wl

V → SV , the adjoint transpose of α,

11



which is also an internal distributive lattice homomorphism. Now by Axiom 3
applied to C/Y , the relations

(i) u (α̂× 1) v α̂ u (1× S!m
∗Wl

V ); and

(ii) α̂ t (1× S!m
∗Wl

V ) v t(α̂× 1)

hold and since α̂ preserves 0 and 1, this shows that α̂ is split by S!
V ; in other

words the diagram
Sm∗Wl

V
α̂−→ SV

S!m
∗Wl

V ↖ ↑ Id
SV

commutes. By taking adjoint transpose (i.e. changing base) back to Y , we get
that

SWl

Y
α−→ SVm

Y

S!Wl

Y ↖ ↑ S!Vm

Y

SY

commutes. Then by applying the functor ΣY to this triangle we see both that
ΣY (α), since it is a distributive lattice homomorphism, is Sf for some f : V →
W and also, by the uniqueness part of Axiom 5′, that fm = l. This shows that
f is a morphism of C/Y . To prove that α = Sf

Y it is sufficient to check that

αS(Id,f)
Y = Sf

Y S
(Id,f)
Y (∗)

since (Id, f) is an regular monomorphism (apply Axiom 4). But (∗) follows
since the adjoint transpose (back to 1) of both sides is ΣY (α).

Axiom 6: For any regular epimorphism q : X ³ Q in C, any for any α,
β : SY → SQ, if Sqα = Sqβ then α = β.

In other words, if q is a regular epimorphism then Sq is a monomorphism in
the full subcategory of [Cop,Set] consisting of all objects of the form SY . Note
that in [T04] this aspect of the axiomatisation is presented as

“The image of a coequalizer diagram under S( ) : C → [Cop,Set] is an equal-
izer diagram provided we restrict to the full category of all objects in [Cop,Set]
of the form SX”.

However, in application it is only the fact that Sq is a monomorphism that is
used, so all the results of [T04] are still available with the weakening just given.

Proposition 3.1.4. Assuming Axioms 1-4, Axiom 6 is slice stable.

Proof. Say X
q−→ Q is a regular epimorphism in C/Y and that we are given α,

β : SWl

Y → SQ
Y with Sq

Y α = Sq
Y β for any object Wl of C/Y . Since Wl exists as

an equalizer

Wl

(Id,l)
↪→ WY

l×Id−→
−→
∆π2

YY
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in C/Y , to prove that α = β it is sufficient to prove that αS(Id,l)
Y = βS(Id,l)

Y and
appeal to Axiom 4. But the adjoint transpose of αS(Id,l)

Y under change of base
back to 1 is ΣY (α) and, identically, the adjoint transpose of βS(Id,l)

Y is ΣY (β);
so it remains to prove ΣY (α) = ΣY (β) which is trivial by application of Axiom
6 to q as q is certainly a regular epimorphism in C (as coequalizers in C/Y are
created in C).

In summary we have therefore now shown that all of the axiomatic account
of weak triquotient assignments in locale theory, which is the main topic of
[T04], is automatically slice stable. The slice stable phrasing of the axioms in
that paper is redundant.

3.2 The double power object axiom

To complete this discussion it is useful to point out that various other categor-
ical axioms for locales are also automatically slice stable. The most important
is probably the next axiom, which offers a categorical characterization of the
double power object:

Axiom 7. The functor S( ) : C → [Cop,Set], once its codomain is
restricted to the full category of all objects in [Cop,Set] of the form SX , has a
right adjoint.

Such a right adjoint, it can be verified, sends SX to SSX

, i.e. the double ex-
ponential. Conversely if such an exponential exists and is representable then the
axiom is satisfied. The notation P(X) = SSX

is used and it can be verified that
a monad is defined on C using the universal properties of exponentiation. With
this axiom we can stop writing ‘the full subcategory of [Cop,Set] consisting of all
objects of the form SX , and write Cop

P , since this full subcategory is readily seen
to be (weakly) equivalent to the opposite of the Kleisli category. Note that Ax-
iom 4 implies that P takes regular monomorphisms to regular monomorphisms.
This is not to say that it preserves equalizer diagrams, though it can be checked
that it preserves coreflexive equalizers.

It is worth noting further that this axiom is a (not necessarily strict) strength-
ening of Axiom 6.

Proposition 3.2.1. Given Axioms 1-4, Axiom 7 is slice stable.

Proof. Firstly notice that for any objects X and Y of C, the double exponential

SS
XY
Y

Y exists in [(C/Y )op,Set]. It is given by P(X)Y . This can be verified by
change of base since, for any object Wl of C/Y ,

C/Y (Wl,P(X)Y ) ∼= C(W,P(X))
∼= Nat[SX , SW ]
∼= Nat[SXY

Y , SWl

Y ]

where the last line is by change of base.

13



Now, as in the previous proof any Xf , an object of C/Y , occurs as an
equalizer

Xf

(Id,f)
↪→ XY

f×Id−→
−→
∆π2

YY

and this gives rise, via Axiom 4 in the slice C/Y , to a coequalizer in (a full
subcategory of) [(C/Y )op,Set] which we can write as

S(X+X+Y )Y

Y

α−→
−→

β

SXY

Y

S(Id,f)
Y−→ SXf

Y .

If we therefore define PY (Xf ) to be the equalizer of

P(X)Y

Sα
Y−→
−→
Sβ

Y

P(X + X + Y )Y

it clearly then has the right universal property of the double exponential.

3.3 The upper and lower power monad axiom

In [T05] an axiomatic account of the upper and lower power constructions is
developed. Both are submonads of the double power monad. The defining char-
acteristic of these power constructions, denoted PU and PL respectively, is that
their points (i.e. morphism C(Z,PU (X)), C(Z, PL(X)) respectively) are in order
isomorphism with internal meet (respectively join) semilattice homomorphisms
SX → SZ . Notice that just as in the double power construction it is easy, by
change of base, to check that PY

U (XY ) ∼= PU (X)Y and PY
L (XY ) ∼= PL(X)Y

where the Y in PY
L indicates the lower power construction relative to C/Y ,

and similarly for the upper power construction. Explicitly PL(X)
jL
X

↪→ P(X) is
constructed as the equalizer of

P(X)
(0S!P(X),f)−→
−→

(S0SX ,g)

S× P(X + X)

where f is the exponential transpose of

SS
X × SX × SX → S

(Λ, a, b) 7−→ Λ(a tSX b)

and g is the exponential transpose of

SS
X × SX × SX → S

(Λ, a, b) 7−→ Λ(a) tS Λ(b).

14



The notation (PL, ηL, µL) is used for the induced monad and we use ♦X :
SX → SPL(X) for the double exponential transpose of jL

X . By construction
every internal join semilattice homomorphism α : SX → SY factors as Spα♦X

for some unique pα : Y → PL(X) and this establishes an order isomorphisms
between t − SLat[SX , SY ] and C(Y, PL(X)).

To develop a reasonable theory of these power constructions (for example
to prove the Hofmann-Mislove theorem) it appears to be necessary to make
the additional assumption that PU is co-KZ and, order dually, that PL is KZ.
So, given the subject to hand, it makes sense to check that this additional
assumption is also slice stable. We will look at the lower construction only; the
upper construction is exactly order dual.

Let us first gather a couple of consequences of Axiom 4.

Proposition 3.3.1. A. (lower coverage theorem) If E
e

↪→ X

f→
→
g

Y is an equal-

izer diagram in C then for any join semilattice homomorphism α : SX → SZ

such that
α uSX (Id× Sf ) = α uSX (Id× Sg)

there exists unique join semilattice homomorphism β such that βSe = α.
B. If e : E ↪→ X is a regular monomorphism then so is PL(e).

Proof. A. Given such an α, there certainly exists unique β such that βSe = α;
this is Axiom 4. We just need to check that β is a join semilattice homomor-
phism. Certainly β preserves 0 since so too do Se and α. To prove that β
preserves binary join it is sufficient to prove that Se × Se is an epimorphism (in
CP) since both Se and α preserve binary join. But Se×Se = (Se×S1E )(S1X ×Se)
so it will follow that this morphism is an epimorphism provided we show that
1X + e and e + 1E are both regular monomorphisms and then apply Axiom 4
twice. But by application of Axiom 2

E + E
[fe,fe]−→ Y

e + 1E ↓ ↓ ∆Y

X + E
[(f,g),(fe,fe)]−→ Y × Y

is a pullback diagram and regular monomorphisms (here ∆Y ) are pullback sta-
ble, so e + 1E is a regular monomorphism. 1X + e is dealt with similarly.

B. This is an application of A and the defining property of the points of
PL(E) and PL(X).

The order dual of Part A of the proposition is stated as an axiom in [T06].
Part B can be applied to show that our final axiom is slice stable.

Axiom 8. The monad PL is KZ and the monad PU is co-KZ.

Proposition 3.3.2. Given Axioms 1-4 and Axiom 7, Axiom 8 is slice stable.
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Proof. We look at the lower power monad only; the situation with the upper
power monad is dual.

To see the proof consider the following diagram constructed from Xf , an
arbitrary object of C/Y :

PY
L PY

L (Xf )
[µY

L ]Xf−→ PY
L (Xf )

[P Y
L ηY

L ]Xf−→ PY
L PY

L (Xf )
PY

L PY
L ((Id, f)) ↓ PY

L ((Id, f)) ↓ PY
L PY

L ((Id, f)) ↓
PY

L PY
L (XY )

[µY
L ]XY−→ PY

L (XY )
[P Y

L ηY
L ]XY−→ PY

L PY
L (XY ).

The assertion that the monad defined by PL is KZ is by definition (e.g. Lemma
B1.1.12 of [J02]) exactly the assertion that µL is right adjoint to PLηL in the
order enrichment. But since µL ◦ PLηL = Id this is equivalent to the assertion
that PLηL ◦ µL v Id. This last assertion is sufficient to show that the bottom
row of the diagram is less than or equal to IdP Y

L P Y
L (XY ) since we have commented

already that PY
L (XY ) ∼= PL(X)Y . Therefore [PY

L ηY
L ]Xf

◦ [µY
L ]Xf

v IdP Y
L P Y

L (Xf )

since PY
L PY

L ((Id, f)) is a regular monomorphism as (Id, f) is.

The axiom given in [T05] relevant to this is the stronger assertion that the
Kleisli category Cop

PL
is Cauchy complete. It is shown in that paper that an

assumption of Cauchy completeness implies that the lower power monad is KZ.
In application it is only the KZ property of the power monad that is exploited
and so the result just shown is enough to prove that all the results of [T05] are
slice stable.

From now on we shall assume that C is a category that satisfies all the
axioms.

4 Properties of discrete objects in C
As an application we now prove some results from locale theory. None of the
results are new; the purpose of the exposition is to (i) show that they can all
be shown axiomatically and (ii) provide some definitions and lemmas that are
necessary for our final section on Joyal and Tierney’s localic slice stability
result. We only discuss the lower case that arises through our axiomatisation
of the lower power monad. The upper case is exactly order dual and is not
discussed.

The first subsection recalls the definition of open map and develops some ba-
sic results about open maps. We recall how discrete objects can be defined using
open maps and that the resulting full subcategory, DisC , is regular. The second
subsection shows how the order dual of the Hofmann-Mislove theorem can be
applied to show that discrete objects are exponentiable. The third subsection
describes how the isomorphism inherent in this observation can be defined using
relational composition. The final two subsections introduce the ideal comple-
tion of a preorder and develop its theory, essentially by applying our axiomatic
relational composition to recover what is familiar set theoretically.
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This section is long since the proofs are based on a categorical axiomatisation
and so we no longer have certain basic set theoretic results available. The
logically more sophisticated reader may wish to simply observe that the usual
set theoretic arguments are all available using only the regular fragment of
set theory and since the relevant category of discrete objects can be shown
axiomatically to be regular all the arguments can be deployed within it. This
makes the familiar lattice theoretic proofs available in the axiomatic context
that is given and so this provides an alternative route for the proofs in this
section. However we have chosen to ignore this approach and just prove the
results directly from the axioms.

4.1 Open maps

To proceed we are going to need to recall some results about open maps relative
to C. Following the usual definition for the case when C is the category of
locales, a morphism f : X → Y of C is said to be open if Sf has a left adjoint
∃f satisfying the Frobenius reciprocity condition

uSY (∃f × IdSY ) = ∃f uSX (IdSX × Sf ).

The reason for our interest in open maps is that they can be used to determine
when an object is discrete:

Definition 4.1.1. An object X of C is said to be discrete provided the maps
!X : X → 1 and ∆X : X ↪→ X ×X are open.

This captures the usual localic notion of discrete. We use DisC to denote
the fullsubcategory of discrete objects of C.

It can be shown axiomatically that open maps are pullback stable, see [T04].
Standard categorical arguments can be deployed to show that (i) any morphism
between discrete objects is open and (ii) finite limits in DisC are created in C.

The paper [T04] also shows that the pullback stability of open maps can be
strengthened as follows: if

X ×Y Z
p∗f→ Z

f∗p ↓ ↓ p

X
f→ Y

is a pullback diagram in C and p is open, then ∃f∗p satisfies the Beck-Chevalley
condition; that is ∃f∗pSp∗f = Sf∃p. Further ∃f∗p is unique in the sense that if α :
SX×Y Z → SX is any other join semilattice homomorphism satisfying Frobenius
reciprocity on f∗p and αSp∗f = Sf∃p, then α = ∃f∗p. As an application we
show that in certain situations ∃f∗p can be calculated explicitly:

Lemma 4.1.2. Given objects A and Z of C, if !A : A → 1 is open then ∃π1 :
SZ×A → SZ is given by

[∃π1 ]W (a) = [∃A]W×Z(a)
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for each object W of C and each a : W × Z ×A → S. In other words ∃π1 = ∃Z
A

where exponentiation is in [Cop, Set].

Of course the notation ∃A : SA → S is for the left adjoint to S!A . We say
that A is open if !A is an open map (though the term overt is also used in the
literature). This technical result will be of use later when we are describing the
exponentiability of discrete objects.

Proof. Define α : SZ×A → SZ by αW (a) = [∃A]W×Z(a). It is routine to verify
that this is natural in W and that α is a join semilattice homomorphism since
∃A is. But by naturality of ∃A we have that αSπ2 = S!Z∃A and since α satisfies
Frobenius reciprocity on π1 : Z ×X → Z (as ∃A satisfies Frobenius reciprocity
on !A : A → 1) we have that α = ∃π1 by uniqueness of maps satisfying Beck-
Chevalley on the pullback square:

Z ×A
π2→ A

π1 ↓ ↓!A
Z

!Z→ 1

It can also be shown ([T04]) that a subobject is open if and only if it is an
open regular monomorphism. In one direction this is shown by observing that
the map puq : S → SS, given by the exponential transpose in [Cop,Set] of the

meet operation u : S× S→ S, is a left adjoint to SS S
1S→ S. This left adjoint,

it can be shown, witnesses that 1S is an open map and since 1S is a regular
monomorphism (its domain is the terminal object) we have that every open
subobject is an open regular monomorphism. In the other direction if i : X0 ↪→
X is a regular monomorphism and i is an open map then it can be verified that

i is the pullback of 1S along the open ∃i(1SX0 ) (i.e. [∃i]1(X0
1S!X0−→ S)). It follows

that for any open subobject i : X0 ↪→ X we have that

∃iSi = a u ( )

where a = ∃i(1SX0 ).
Our final observation about DisC , which we again recall from [T04], is that

it forms a regular category and so has image factorizations. If f : X → Y
is a map between discrete objects then it is open and its image is the open
subobject ∃f (1SX ) of Y . Note that this also implies that monomorphisms are
regular in DisC since the image factorization of a monomorphism is itself and
open subobjects are regular monomorphisms.

Notation 4.1.3. We need to make a remark on notation. For any natural
transformation α : SX → SY if a : 1 → SX , then of course α(a) : 1 → SY is
also by definition a natural transformation. However, by Yoneda’s lemma, it is
determined uniquely by the open [α]1paq where paq : X → S is the exponential
transpose of a. However in the following we will not use notation to distinguish
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between (i) the morphism paq : X → S, (ii) the natural transformation a : 1 →
SX or (iii) the open subobject (paq)∗1 ↪→ X referring to each ((i), (ii) or (iii))
generically as ‘an open of X’ and always using the notation a.

On the other hand for situations where we have R : X × Y → S we will
use pRq for the exponential transpose X → SY . Although this introduces a
notational difference between the binary and nullary situations, it does seem to
strike the right balance by not over burdening the notation whilst at the same
time retaining clarity when multiple variables need to be introduced.

Putting this Remark on notation to use, and as another simple application
of the Beck-Chevalley condition on pullback diagrams of open maps, we show
that if a discrete object has a point, then the singleton subset corresponding to
that point is inhabited:

Lemma 4.1.4. If A is a discrete object of C and there exists p : 1 → A then

∃A(p∆Aqp) = 1S.

Proof. The open p∆Aqp, i.e. 1
p→ A

p∆Aq→ SA, is equal to A
(IdA,p!A)−→ A×A

∆A−→ S
so following the notational convention just remarked upon,

p∆Aqp = ∆A(IdA, p!A)

= S(IdA,p!A)∆A.

By Beck-Chevalley applied to the pullback square

A
(IdA,p!A)−→ A×A

!A ↓ ↓ π2

1
p→ A

we have that

∃A(p∆Aqp) = ∃AS(IdA,p!A)∆A

= Sp∃π2∆A

= Sp1SA

= 1S

where ∃π2∆A = 1SA since ∆A = ∃∆A(1SA) and ∃π2∃∆A = IdSA by uniqueness
of left adjoints since ∃π2∃∆A is left adjoint to S∆ASπ2 = SIdA = IdSA .

The following lemma will be required below. Intuitively it is showing that
any inhabited subset of 1 must be the whole of 1:

Lemma 4.1.5. If i : I0 ↪→ 1 is an open subobject of 1 such that ∃i(1) = 1 then
i is an isomorphism.
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Proof. By definition i is the pullback of 1 1S−→ S along some aI0 : 1 → S. Beck-
Chevalley applied to the pullback square implies that ∃iS!I0 = SaI0 puq where
puq is the exponential transpose of u : S× S→ S. It follows that SaI0 puq(1) = 1
since S!I0 preserves 1 and ∃i preserves 1 by assumption. It follows that aI0 = 1S

since puq(1) is the identity on S and so i is isomorphic to the identity on 1.

4.2 Application of the Hofmann-Mislove theorem to ex-
ponentiability

In this subsection we recall the main result of [T05] which is an axiomatic proof
of the existence of an order isomorphism,

C(1, PL(X)) ∼= {X0 ↪→ X | X0 open, X0 ↪→ X weakly closed}. (∗)

This result can be seen to be the order dual (in the order enrichment of C) of
the well known Hofmann-Mislove theorem, [HM81]. It is equivalent to Bunge-
Funk’s constructive description of the points of the lower power locale, [BF96].
The reason for recalling it is that it, together with a slice stable account of C,
allows us to prove axiomatically the well known result (made explicit by Vickers
in [V97]) that SA ∼= PL(A) for discrete objects A. It is the application of this
isomorphism that will guide much of the technical work for the rest of the paper
so the final parts of this subsection are devoted to giving an explicit description
of how the isomorphism works.

Of course, we must now give the definition of weakly closed:

Definition 4.2.1. A monomorphism X0 ↪→ X is a weakly closed subobject if
it exists as a lax equalizer of a diagram f, g : X ⇒ Y universally setting g v f
where f factors via the terminal object.

This recovers the usual localic definition in the case where C is the category
of locales.

We must recall how the isomorphism (∗) works: it sends a point pα : 1 →
PL(X) to the lax equalizer universally setting ηL

X : X → PL(X) less than or

equal to X
!X−→ 1

pα−→ PL(X). In the other direction, p∃X0Si is the point of

PL(X) corresponding to weakly closed X0
i

↪→ X with X0 open.
What happens when X is discrete? We have the following observation which

is an axiomatic account of a result in [V97]:

Lemma 4.2.2. If A is a discrete object then for any regular monomorphism
i : X0 ↪→ A the following are equivalent:

(a) X0 is an open object of C and i is a weakly closed subobject of A.
(b) i is an open subobject.

Proof. (a)=⇒(b). The diagonal ∆X0 : X0 ↪→ X0 × X0 is open since it is the
pullback (along i × i) of the open diagonal ∆A : A ↪→ A × A. Therefore X0 is
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discrete and since any morphism between discrete objects is open we have that
i is open.

(b)=⇒(a). Certainly X0 is open since the unique map !X0 factors as X0
i

↪→
A

!A→ 1 and both factors are open. Next we show that i is weakly closed. By
definition of being an open subobject, there exists a morphism a : A → S such
that i : a ↪→ A is the pullback of 1 : 1 → S along a. We show that a ↪→ A is
the lax equalizer universally setting ηL

A less than or equal to pα!A where α is

SA Si

→ Sa ∃a→ S; equivalently α = ∃A(au ( )). Note firstly that ηL
Ai v pα!Ai since

SiS!A = S!X0 and Id v S!a∃a so to complete it is sufficient to check that if there
is any E

e→ A with the property that ηL
Ae v pα!Ae then e must factor through

i. This will show that i is the lax equalizer universally setting ηL
A less than or

equal to pα!A.
By change of base (to stage E) we can assume that we are given 1 e→ A with

the property that ηL
Ae v pα!Ae. By taking exponential transpose this implies

that SA Se

→ S is less than or equal to α in the order enrichment. Say the subobject
1 e→ A (which must be open since 1 is discrete) is classified by ae : A → S, i.e.
ae = ∃e(1). Therefore since 1 = Se(ae) we have that 1 = α(ae) = ∃A(a u ae).
Now consider the pullback square

I0
p→ a

i0 ↓ ↓ i

1 e→ A

(+).

Since i0 factors as !Aip, we must have that ∃I0 = ∃A∃i∃p (as the left adjoint to
Sio = SpSiS!A is unique and certainly p is open as it is the pullback of the open
e). But then

∃I0(1) = ∃A∃i∃p(1)
= ∃A∃i∃p(Sio1)
= ∃A∃iSi∃e(1) (x)
= ∃A(a u ae)
= 1,

where step (x) is by Beck-Chevalley of the pullback square (+). But then,
by Lemma 4.1.5, we have that i0 is an isomorphism which shows that ae =
auae; since this is sufficient to show that e factors through i as required we are
done.

For discrete A therefore we have an order isomorphism between open sub-
objects of A and join semilattice homomorphisms SA → S. The next lemma
clarifies how this order isomorphism works, in other words it describes how the
order isomorphism (∗), recalled above, specialises when X is restricted to being
a discrete object.
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Lemma 4.2.3. If A is a discrete object of C then

C(A,S) → t−SLat[SA, S]
a 7−→ ∃A(a u ( ))

is an order isomorphism whose inverse sends any α : SA → S to αp∆Aq where
p∆Aq : A → SA is the exponential transpose of the diagonal.

Proof. The proof is essentially an application of our description of the order
isomorphism (∗) which we have recalled above. If a

i
↪→ A is open, then the

corresponding join semilattice homomorphism under (∗) is the map ∃aSi; but
∃a factors as ∃A∃i (by uniqueness of left adjoints since !a factors as !Ai) and
∃iSi = a u ( ); so the join semilattice homomorphism corresponding to a is
∃A(a u ( )).

In the other direction, given a join semilattice homomorphism α : SA → S,
we have established in the previous lemma that the corresponding weakly closed
map, i : X0 ↪→ A say, is open. To complete this proof we must show that ∃i(1) =
αp∆Aq. Firstly note that by our explicit description of (∗) recalled above that

α = ∃X0Si.

But, further, i factors as X0

(i,IdX0 )
↪→ A × X0

π2→ A where π2 is open since
it is the pullback of the open !X0 . The proof therefore reduces to showing
∃π2∃(i,IdX0 )(1) = ∃X0Sip∆Aq. Now by Beck-Chevalley applied to the pullback
square

X0
i→ A

(i, IdX0) ↓ ↓ ∆A

X0 ×A
i×IdA→ A×A

(and using the fact that Si(1) = 1) we are in fact reduced to checking that

∃π2Si×IdA(∃∆A(1)) = ∃X0Sip∆Aq.

However this is immediate by taking exponential transpose since we known that
(Lemma 4.1.2) ∃π2 = ∃A

X0
because X0 is open.

Proposition 4.2.4. If A is discrete then the presheaf SA is representable and
is naturally isomorphic to PL(A).

Proof. The proposition is equivalent to the assertion that the exponential SA

exists in C and is isomorphic to PL(A).
But for any object X of C we have

C(X ×A,S) ∼= C/X(AX , SX)
∼= {I ↪→ AX open relative to X}
∼= C/X(1, PX

L (AX))
∼= C(X, PL(A))
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The second to last line uses the previous lemmas carried out in the slice C/X.
The last line is because the lower power monad is slice stable.

There is therefore an isomorphism in C from PL(A) to SA for discrete ob-
jects A. In later sections we will need the following explicit description of this
isomorphism.

Lemma 4.2.5. (a) The natural order isomorphism C(X,PL(A)) → C(X, SA)
established in the previous proposition sends any pα : X → PL(A) to the double
exponential transpose of

A
p∆Aq−→ SA α−→ SX .

(b) The isomorphism φA : PL(A) → SA established in the previous proposi-
tion is given by the double exponential transpose of

A
p∆Aq−→ SA ♦A−→ SPL(A).

Proof. Firstly (b) is immediate from (a) since the PL(A) → SA is the mate of
the identity on PL(A) under C(X,PL(A)) ∼= C(X, SA) and the identity on PL(A)
is equal to p♦A

.
For (a) this is just from the previous lemma by slice stability.

4.3 Relational composition

In this subsection we describe the order isomorphism just established in terms of
axiomatic relational composition. It seems that the most appropriate definition
of relational composition is found by not restricting to discrete objects but by
only making the minimal (and surely necessary) assumption that the object that
is both codomain and domain in the definition of composition is open. Although
the operation is then only partially defined it has all the right properties.

Definition 4.3.1. If A is an open object of C and R1 an open of W × A and
R2 an open of A×X then define R1; R2, an open of W ×X, by

R1; R2 = ∃π13(Sπ12R1 u Sπ23R2).

Our first observation is that this definition makes sense: ∃π13 : SW×A×X →
SW×X exists since !A : A → 1 is an open map and therefore so too is π13 :
W ×A×X → W ×X as it is the pullback of !A along !W×X .

Our second observation is that if W , A and X are discrete then this definition
recovers relational composition. This is because ∃π13 defines image factorization
in the category of discrete objects relative to C.

Finally we must of course check that:

Lemma 4.3.2. Where ; is defined it is associative.

Proof. Say R1 is an open of W ×A, R2 is an open of A×B and R3 is an open
of B × Y where A and B are open objects of C. We must check that

(R1;R2); R3 = R1; (R2; R3) (∗).

23



But the LHS of (∗) is

∃π13(Sπ12∃π13(Sπ12R1 u Sπ23R2) u Sπ23R3)
= ∃π13(∃π134Sπ123(Sπ12R1 u Sπ23R2) u Sπ23R3)
= ∃π13∃π134((Sπ12R1 u Sπ23R2) u Sπ134Sπ23R3)
= ∃π14(Sπ12R1 u Sπ23R2 u Sπ34R3)

where the first line is by Beck-Chevalley for the pullback square

W ×A×B × Y
π123→ W ×A×B

π134 ↓ ↓ π13

W ×B × Y
π12→ W ×B

The second line exploits the fact that π134 : W×A×B×Y → W×B×Y is open
(it is the pullback of the open π13) and so satisfies Frobenius reciprocity. The
last line is because π14 : W ×A×B×Y → W ×Y factors as W ×A×B×Y

π134→
W × B × Y

π13→ W × Y ; therefore Sπ134Sπ13 = Sπ14 and so ∃π13∃π134 = ∃π14 by
uniqueness of left adjoints.

Symmetrically the RHS of (∗) can be reduced to ∃π14(Sπ12R1 u Sπ23R2 u
Sπ34R3) and so the proof is complete.

Beyond helping with spatial intuitions our relational composition operation
is also key as it allows us to be more explicit about the order isomorphism
C(X ×A,S) ∼= t − SLat(SA, SX) established above.

Lemma 4.3.3. If A is a discrete object of C then the map

C(A×X, S) → t−SLat[SA, SX ]
R 7−→ αR

with αR defined by [αR]W (I) = I; R, is an order isomorphism whose inverse
sends any α : SA → SX to the exponential transpose of αp∆Aq : A → SX .

In other words for every open relation R on A ×X, pRq : A → SX factors
as αRp∆Aq where αR is defined in terms of relational composition.

Proof. Because of (a) of Lemma 4.2.5 we must but show that the image of R
under the isomorphism of that lemma is indeed αR. It is sufficient to check that

pRq = αRp∆Aq

which is the same as checking that ∆R;R = R. This is true by change of base
since ∆AX

is the identity for relational composition in DisC/X . Alternatively
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we can use Beck-Chevalley again:

∆R;R = ∃π13(Sπ12∆A u Sπ23R)
= ∃π13(Sπ12∃∆A

(1SA) u Sπ23R)
= ∃π13(∃∆A×IdX

Sπ1(1SA) u Sπ23R) (a)
= ∃π13∃∆A×IdX

(Sπ1(1SA) u S∆A×IdXSπ23R) (b)
= ∃IdA×X

(1SA×X uR)
= R

where (a) is by Beck-Chevalley on the pullback square

A×X
π1→ A

∆A × IdX ↓ ↓ ∆A

A×A×X
π12→ A×A

and (b) is because ∆A × IdX is open since it is the pullback of the open map
∆A.

Corollary 4.3.4. Where it is defined relational composition is mapped to mor-
phism composition under the isomorphism of the lemma.

Proof. This is immediate since the lemma describes any join semilattice corre-
sponding to a relation in terms of relational composition and we have already
checked that relational composition is associative.

The following result makes use of this explicit description of the order iso-
morphism in terms of relational composition. It proves, for discrete objects at
least, that product in C is given by join semilattice tensor in Cop

PL
. In the case

that C = Loc this is the equivalent to the basic observation that locale product
is given by suplattice tensor.

Proposition 4.3.5. If A and B are two discrete objects of C then,
(i) the map ⊗ : SA × SB → SA×B defined by ⊗ = uSA×B (Sπ1 × Sπ2) is

universally join bilinear,
(ii) the map ♦A×B⊗ : PL(A × B) → P(A + B) defined as the double expo-

nential transpose of SA × SB ⊗→ SA×B ♦A×B→ SPL(A×B) is a monomorphism.

Proof. (i) We must check that for any join semilattice homomorphism SA×B →
SY that precomposition with ⊗ induces an order isomorphism between t −
SLat(SA×B , SY ) and

t −Bilinear(SA × SB , SY ).

By change of base we can assume that Y = 1. But we have the following series
of order isomorphisms:

t −Bilinear(SA × SB , S) ∼= t − SLat(SA, PL(B))
∼= t − SLat(SA,SB)
∼= C(A×B, S)
∼= t − SLat(SA×B , S)
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where the first line is by exponential transpose and the definition ofPL(B) as a
subobject of P(B). Therefore we have but to check that in the reverse direction
(i.e. from t−SLat(SA×B , S) to t−Bilinear(SA× SB , S)) any join semilattice
β : SA×B → S is mapped to β⊗. From above such a β is given by ∃A×B(Rβu( ))
for some unique open Rβ of A×B; the image of β in t−SLat(SA, SB) is therefore
αRβ

. On the other hand the image of β⊗ in t−SLat(SA, SB) under the above
order isomorphism is the composite

SA pβ⊗q→ PL(B)
φB→ SB

Our proof of part (i) will then be complete provided that we can prove that
these two join semilattice homomorphism from SA to SB are equal. This can
be achieved by checking for any Z

z→ SA we have αRβ
z = φBpβ⊗qz; but in fact

we can assume Z = 1 (and so z = I for some open I of A) by applying a change
of base argument. Now pβ⊗q(I) is the point of PL(B) corresponding to the

map SB β(I⊗ )−→ S, i.e. to SB ∃A×B(RβuI⊗( ))−→ S. Its image under the isomorphism
PL(B) → SB is the open ∃A×B(Rβ u I⊗ (p∆Bq)) by lemma 4.2.5, which we can
see is equal to ∃B∃π2(Rβ u Sπ1I u Sπ2(p∆Bq)) by using the definition of ⊗ and
the fact that ∃A×B = ∃B∃π2 since !A×B =!Bπ2 for π2 : A×B → B. Since π2 is
open (as it is the pullback of the open map !A) we have that this is equal to

∃B [∃π2(Rβ u Sπ1I) u (p∆Bq))
= ∃π2(Rβ u Sπ1I).

But we are then done since αRβ
I is the open I; Rβ = ∃π2(Rβ u Sπ1I).

(ii) is immediate given the universal property of ⊗ just established. Note

that the double exponential transpose of SA×B ♦A×B→ SPL(A×B) is, by definition,
the regular monomorphism jL

A×B : PL(A×B) ↪→ P(A×B).

An appendix has been included examining the additional assumption (which
is made in [T06]) that ⊗ : SX × SY → SX×Y is universal join bilinear for
all objects X and Y . The appendix shows that this additional assumption is
slice stable in the presence of the other axioms. It also includes a conjecture
concerning the axiomatic account of localic subgroupoids.

4.4 The ideal completion of a preorder

In this subsection we introduce the ideal completion of a preorder and develop
some basic properties of it. The main result is that this ideal completion con-
struction is a specialisation of a construction given [T05].

Definition 4.4.1. A preorder relative to C is a discrete object B together with
a open relation ¹B ↪→ B ×B which satisfies

(i) ∆B v ¹B , and
(ii) ¹B ;¹B v ¹B .
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Lemma 4.4.2. The data for a preorder is equivalently a pair (B, α : SB → SB)
with the properties that (i) B is discrete, (ii) α is a join semilattice homomor-
phism (iii) IdSB v α and (iv) α is idempotent.

Proof. This is immediate from our observations about the order isomorphism
between open subobjects of B ×B and join semilattice homomorphisms SB →
SB ; in particular the observation that relational composition maps to morphism
composition.

If B is a preorder then we use the notation RB ↪→ B × B × B (and B ×
B × B

RB→ S) to denote the open subobject π∗12(¹B) ∧ π∗13(¹B) (equivalently,
the open Sπ12(¹B) u Sπ13(¹B)). Set theoretically we are of course thinking
RB = {(b1, b2, b3) | b1 ºB b2 and b1 ºB b3}.

Definition 4.4.3. If B is a preorder relative to C then define Idl(B)
iB
↪→ SB to

be the intersection (=pullback) of the equalizer

Au ↪→ SB

αRB−→
−→
⊗∆SB

SB×B

and

A1 ↪→ SB

∃B−→
−→
1S!S

B

S.

Capturing the usual spatial notion we have that, by definition, an open I of
a preorder B is said to be an ideal provided that

(i) ∃B(I) = 1S - “I is non-empty”,
(ii) I;ºB= I - “I is lower closed”; and
(iii) I ⊗ I v I; RB - “I is directed”.
Note that condition (ii) is equivalent to I;ºBv I since ∆B v¹B by defi-

nition of preorder. The next proposition justifies our notation Idl(B) since it
shows that the points of Idl(B) are in order isomorphism with the ideals of B.

Proposition 4.4.4. For any open I of a preorder B, I : 1 → SB factors via

Idl(B)
iB
↪→ SB if and only if I is an ideal of B.

Proof. This is essentially by the construction of Idl(B). The only missing step is
a proof that I is lower closed (equivalently I;ºBv I) if and only if I; RB v I⊗I.

Firstly, say that I; RB v I ⊗ I, then by application of S∆B we have that

S∆BI; RB v I

since I ⊗ I = Sπ1I u Sπ2I (and certainly S∆BSπ1 = S∆BSπ2 = IdSB ). But
S∆BI; RB is equal to

S∆B∃π23(Sπ1I u Sπ12 ºB uSπ13 ºB)
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(where π1 : B ×B ×B → B) which reduces to

∃π2(Sπ1Iu ºB)

by Beck-Chevalley applied to the pullback square

B ×B
IdB×∆B→ B ×B ×B

π2 ↓ ↓ π23

B
∆B→ B ×B

together with noting that SIdB×∆BSπ1 = Sπ1 and SIdB×∆BSπ12 = IdSB×B =
SIdB×∆BSπ13 . But ∃π2(Sπ1Iu ºB) = I;ºB by definition of ;, so we are done
checking that I;RB v I ⊗ I implies that I is lower closed.

Secondly, in the other direction, say I is lower closed, so we have that I;ºBv
I, i.e. ∃π2(Sπ1Iu ºB) v I. Then, since ∃π2 is left adjoint to Sπ2 we have that
Sπ1Iu ºBv Sπ2I. To show that I; RB v I ⊗ I we are required to show

∃π23(Sπ1I u Sπ12 ºB uSπ13 ºB) v Sπ1I u Sπ2I.

We will just show that

∃π23(Sπ1I u Sπ12 ºB uSπ13 ºB) v Sπ1I

since proof of the same inequality but with π2 on the RHS rather than π1 is
symmetric. However this is immediate by noting that ∃π23 a Sπ23 , that Sπ23Sπ1

factors as Sπ12Sπ2 and that Sπ1I (for π1 : B×B×B → B) is equal to Sπ12Sπ1I,
since then

Sπ1I u Sπ12 ºB uSπ13 ºB v Sπ12(Sπ1Iu ºB)
v Sπ12Sπ2I = Sπ23Sπ1I.

We now relate the construction of the ideal completion of a preorder to a
more general construction given in [T05]. The reason for checking that our
construction is the same is that we will need some of the known properties of
the more general construction in our applications.

Our Axiom 8 asserts that PL is a KZ-monad and [T05] shows that this implies
that such inflationary idempotents split. With an assumption that the lower
power monad is KZ, given any object X and an inflationary and idempotent
join semilattice homomorphism α : SX → SX we can find an object E and
join semilattice homomorphisms β : SX → SE and γ : SE → SX such that
γβ = α and βγ = IdSE . In fact [T05] shows that γ is a distributive lattice
homomorphism; this fact will play a key role later. We now recall how E is
constructed. Consider the morphisms

εu : SX × SX 3X×3X−→ SPLX × SPLX u→ SPLX and
δu : SX × SX α×α−→ SX × SX u→ SX 3X→ SPLX .
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Let Eu ↪→ PLX be the equalizer in Cof their double exponential transposes, i.e.
of

PLX

εu−→
−→
δu

P(X + X).

Further consider the morphisms

ε1 : 1 1→ SPLX and
δ1 : 1 1−→ SX 3X→ SPLX ,

and let E1 ↪→ PLX be the equalizer in C of their exponential transposes. Take
eX : E ↪→ PLX to be the intersection of E1 and Eu. To check that this
construction is indeed a generalisation of the definition just given we need to
prove:

Lemma 4.4.5. E ∼= Idl(B) in the case that X = B, a preorder relative to C,
and α = α¹B

.

Proof. There is a monomorphism ♦B×B⊗ : PL(B × B) ↪→ P(X + X) given by
mapping any join semilattice homomorphism γ : SB×B → SY to SB × SB ⊗−→
SB×B γ→ SY . The result then follows by verifying that the equalizer diagram
given in the construction of E factors as the equalizer diagram given in the
definition of Idl(B) followed by ♦B×B⊗. Since ♦B×B⊗ is a monomorphism
this shows that the two constructions are isomorphic. In detail to complete the

proof we need to check that (A) SB
∼=→ PLB

εu−→ P(B + B) factors as

SB ⊗∆SB−→ SB×B ∼= PL(B ×B) ↪→ P(X + X),

(B) SB
∼=→ PLB

δu−→ P(B + B) factors as

SB αRB−→ SB×B ∼= PL(B ×B) ↪→ P(X + X)

and similarly for the two nullary cases.
(A)
To show (A) we check that for any Y

z→ SB ,

Y
z→ SB ∼=→ PLB

εu−→ P(B + B) (I)

is equal to

Y
z→ SB ⊗∆SB−→ SB×B ∼= PL(B ×B)

♦B×B⊗
↪→ P(X + X) (II).

Since all of the constructions involved are stable under change of base we can
reduce to the case that Y = 1 and that therefore z = I, some open of B. In
this case (II) corresponds to the natural transformation

SB × SB ⊗→ SB×B ∃B×B(I⊗Iu( ))−→ S
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since the map ♦B×B⊗ is effectively ‘precompose with ⊗’ and the isomorphism
SB×B ∼= PL(B × B) sends any relation R on B × B to ∃B(R u ( )). (I) on the
other hand corresponds (in the case Y = 1, z = I) to

SB × SB 3X×3X−→ SPLB × SPLB u→ SPLB SpI→ S (i)

which is equal to

SB × SB ∃B(Iu( ))×∃B(Iu( ))−→ S× S u→ S (ii)

since SpI is a meet semilattice homomorphism and SpI 3B = the join semilattice
homomorphism SB → S corresponding to I , which is equal to ∃B(Iu( )) a result
we have already just drawn on. To prove that (i) is equal to (ii) it is sufficient,
again by change of base, to check that they are the same when precomposed

with 1
(J,K)−→ SB × SB for arbitrary opens J and K of B. So a verification of (A)

reduces to checking that

∃B×B(I ⊗ I u J ⊗K) = ∃B(I u J) u ∃B(I uK) (∗).

But the LHS of (∗) is equal to

∃B∃π1(Sπ1(I u J) u Sπ2(I uK))
= ∃B [(I u J) u ∃π1Sπ2(I uK)]

= ∃B [(I u J) u S!B∃B(I uK)]
= ∃B(I u J) u ∃B(I uK)

where the first step is because π1 : B × B → B is open (it is the pullback of
the open map !B : B → 1), the second step is Beck-Chevalley applied to the
pullback square

B ×B
π2→ B

π1 ↓ ↓!B
B

!B→ 1

and the third and final step is because !B is open. This completes our verification
of (A).

(B)
To check (B) it is sufficient to show for any Y

z→ SB that ♦B×B⊗αRBz =
δuz. By change of base we can take Y = 1 and z = I, an arbitrary open of B.
Now ♦B×B⊗αRB

I is the natural transformation

SB × SB ⊗→ SB×B ∃B×B(I;Ru( ))−→ S.

The image of I under SB
∼=→ PLB

δu−→ P(B + B) is

SB × SB
α¹B

×α¹B−→ SB × SB u→ SB ♦B→ SPL(B) SpI−→ S

30



which is equal to

SB × SB
α≤B

×α≤B−→ SB × SB u→ SB ∃B(Iu( ))−→ S.

So, by change of base, to establish (B) it is sufficient to check for any opens
J,K : 1 → SB of B that

∃B(I u (J ;¹B) u (K;¹B)) = ∃B×B(I;RB u Sπ1J u Sπ2K) (∗)
Since RB = Sπ12 ºB uSπ13 ºB this becomes an application of Beck-Chevalley
together with various applications of the definition of a map being open, since
all the projections involved are open as they are pullbacks of the open map
!B : B → 1. The RHS of (∗) is equal to

∃B×B(∃π23(Sπ1I uRB) u Sπ1J u Sπ2K)
= ∃B×B(∃π23(Sπ1I u Sπ12 ºB uSπ13 ºB) u Sπ1J u Sπ2K)
= ∃B×B∃π23((Sπ1I u Sπ12 ºB uSπ13 ºB) u Sπ2J u Sπ3K)

since π2 : B × B × B → B factors as B × B × B
π23→ B × B

π1→ B and π3 :
B ×B ×B → B factors as B ×B ×B

π23→ B ×B
π2→ B.

The LHS of (∗) is equal to

∃B(I u ∃π1(Sπ2Ju ºB) u ∃π1(Sπ2Ku ºB))
= ∃B∃π1(Sπ1I u (Sπ2Ju ºB) u Sπ1∃π1(Sπ2Ku ºB))

= ∃B∃π1(Sπ1I u (Sπ2Ju ºB) u ∃π12Sπ13(Sπ2Ku ºB))
= ∃B∃π1∃π12(Sπ1I u Sπ2J u Sπ12 ºB uSπ3K u Sπ12 ºB))

where the second last line is by Beck-Chevalley on the pullback square

B ×B ×B
π13→ B ×B

π12 ↓ ↓ π1

B ×B
π1→ B

This completes a proof of (B) since ∃B∃π1∃π12 = ∃B×B∃π23 as both are left
adjoint to S!B×B×B

: S→ SB×B×B .
Next we check that nullary cases. To check that ∃B : SB → S factors

as SB ∼= PL(B) δ1→ S, by change of base we are reducing to checking that

∃B(I) = δ1(J 7−→ ∃B(I u J)) for any open I of B. But δ1 : PL(B) δ1→ S is the
map which sends any α : SB → S to α(1SB ) since it is the exponential transpose

of 1
1SB→ SB ♦B→ SPL(B) and so is equal to PL(B) ↪→ SSB S1SB→ S. Therefore

δ1(J 7−→ ∃B(I u J)) = ∃B(I u 1SB ) = ∃B(I) and we are done checking that ∃B

factors via δ1.

That SB 1S!S
B

→ S factors as SB ∼= PL(B) ε1→ S is immediate since ε1 factors as

PL(B) !PL(B)

→ 1 1S→ S by definition of 1SPL(B) , so we are done checking the nullary
cases and have finished the proof.
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In other words we have now checked that the more general construction of the
ideal completion as given, in [T05], for any X with an inflationary idempotent
join semilattice α : SX → SX coincides with our Idl(B) for the case that X is
a preorder B.

4.5 The ideal completion of a join semilattice

In this subsection we make the entirely routine observation that if B is an inter-
nal join semilattice in DisC , and is therefore a preorder relative to C, then the
construction of Idl(B) can be simplified to an equalizer involving the join oper-
ation and no longer needs to be explicitly dependent on relational composition.
This allows us to easily make the construction Idl( ) functorial and to give an
explicit description of arbitrary maps Y → Idl(B) in C. It is the functoriality
of this construction and the explicit description of its general points that is key
to our proof, to follow in the final section, of Joyal and Tierney’s result about
the logical slice stability of locales.

We use the notation ∨ − SLatDisC to denote the category of internal join
semilattices in DisC . The ‘∨’ is just a notational convenience to help us decide
the direction of the ordering on any given semilattice. For any internal join
semilattice in a cartesian category, say denoted (B,∨B , 0B), as usual we define
≥B ↪→ B ×B to be the equalizer of

B ×B

∨B−→
−→
π1

B,

and as in our discussion of preorders we define RB ↪→ B × B × B to be the
intersection π∗12 ≥B and π∗13 ≥B . In fact RB has an alternative description in
this case:

Lemma 4.5.1. For any join semilattice (B,∨B , 0B) in a cartesian category, RB

is isomorphic to the pullback of ≥B ↪→ B×B along IdB×∨B : B×B×B → B×B.

Proof. Intuitively this is just the assertion that the set {(b1, b2, b3) | b1 ≥B b2

and b1 ≥B b3} is equal to {(b1, b2, b3) | b1 ≥B b2∨B b3} which of course is entirely
trivial. The categorical verification that the two pullbacks are isomorphic is
routine from the definition of being an internal join semilattice and the definition
of ≥B as an equalizer. Although the proof is entirely routine the diagram chase
involved is slightly lengthy.

So, for join semilattices in DisC , we have RB = SIdB×∨B (≥B).

Lemma 4.5.2. For any join semilattice (B,∨B , 0B) in DisC , Idl(B) is given
by the intersection of the equalizer of

SB

S∨B−→
−→
⊗∆SB

SB×B
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and the equalizer of

SB

S0B−→
−→
1S!S

B

S.

Proof. We verify for arbitrary Y
z→ SB that the arrows

Y
z→ SB

(S∨B ,S0B )−→
−→

(⊗∆SB ,1S!S
B )

SB×B × S (α)

are equal if and only if the arrows

Y
z→ SB

(αRB
,∃B)−→

−→
(⊗∆SB ,1S!S

B )

SB×B × S (β)

are equal. As usual, by change of base we can assume that Y = 1 and z = I,
an open of B.

(β) =⇒ (α)
If (β) is true then I is lower closed by Proposition 4.4.4. We firstly check

that αRB
(I) = S∨B (I). We have just recalled that RB = SIdB×∨B (≥B) and so,

αRB (I) = ∃π23(RB u Sπ1(I))
= ∃π23(SIdB×∨B (≥B) u Sπ1(I))
= ∃π23(SIdB×∨B (≥B) u SIdB×∨BSπ1(I))
= ∃π23(SIdB×∨B [(≥B) u Sπ1(I)])
= S∨B∃π2 [(≥B) u Sπ1(I)]
= S∨B (I).

where the second last line is by Beck-Chevalley on the pullback square

B ×B ×B
IdB×∨B→ B ×B

π23 ↓ ↓ π2

B ×B
∨B→ B

and the last line is because I is lower closed.
Next we check that S0B (I) = ∃B(I);

S0B (I) = S0B (∃π2(≥B uSπ1I))

= ∃BS(IdB ,0B !B)(≥B uSπ1I))
= ∃B(I)

where the second line is by Beck-Chevalley applied to the pullback square

B
(IdB ,0B)→ B ×B

!B ↓ ↓ π2

1 0B→ B
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and the last line is because S(IdB ,0B !B)(≥B) = 1SB since the pullback of ≥B ↪→
B×B along B

(IdB ,0B)→ B×B is isomorphic to the identity on B. This complete
our proof of (β) =⇒ (α).

(α) =⇒ (β)
Assume (α). Then S0B (I) = 1S. By Lemma 4.1.4 to prove that ∃B(I) = 1S

it is sufficient to check that p∆Bq0B v I. The open p∆Bq0B of B is the regular
monomorphism 1 0B→ B since we have a pullback square

1 0B→ B
0B ↓ ↓ ∆B

B
(IdB ,0B !B)→ B ×B

But S0B (I) = 1S implies 1S : 1 → S factors as 1 0B→ B
I→ S, and so for any

W
z→ B, if it factors via 1 0B→ B then it also factors via I; this shows that

p∆Bq0B v I (see the comments after the introduction of Axiom 3) and so
∃B(I) = 1S.

Finally we show that if S∨B (I) = I ⊗ Ithen αRB (I) = I ⊗ I. However the
proof shown in (β) =⇒ (α), that S∨B (I) = αRB (I) will be available provided we
can check that (α) implies that I is lower closed. To prove that I is lower closed
we check ∃π2(Sπ1Iu ≥B) v I, which is equivalent to checking Sπ1Iu ≥Bv Sπ2I.
But S∨B (I) = I ⊗ I = Sπ1I u Sπ2I v Sπ2I so it is sufficient to check that

Sπ1Iu ≥Bv S∨BI.

Now for any W
z→ B if z factors through both (i) Sπ1I and (ii) ≥B , then

(i) Iπ1z = 1S!B×Bz and (ii) ∨Bz = π1z. Putting these together we get that
I ∨B z = 1S!B×Bz and so z factors through S∨BI. This shows that Sπ1Iu ≥Bv
S∨BI and we are done.

Lemma 4.5.3. The construction given of Idl(B) extends to a functor Idl :
∨ − SLatDisC → Cop which is a subfunctor of S( ).

Proof. Say f : B1 → B2 is a join semilattice homomorphism. Then it is clear
that we have the following commuting diagram

Idl(B2) ↪→ SB2 ⇒ SB2×B2 × S
Sf ↓ Sf×f × IdS ↓

Idl(B1) ↪→ SB1 ⇒ SB1×B1 × S

and so there exists unique Idl(f) : Idl(B2) → Idl(B1) making the square on
the left commute.

The following lemma clarifies why we have introduced the ideal completion
of semilattices as it provides a description of the general points of Idl(B).
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Lemma 4.5.4. There are natural isomorphisms:
(i) C(W, Idl(B)) ∼= {f : B → SW | f takes finite joins to meets} for any

join semilattice B and any object W ; and,
(ii) C(W, Idl(Bop)) ∼= ∧ − SLat(B → SW ) for any meet semilattice B and

any object W .

Proof. (i) is immediate from construction. (ii) is the same assertion as (i) since
B is a meet semilattice if and only if Bop is a join semilattice.

Note that (ii) is, essentially, the well known observation from lattice theory
that DB, the set of lower closed subsets of B, is the free frame on the meet
semilattice B. The reason for introducing (ii) is that in application we will want
to view frames as (infinitary) algebras over meet semilattices in the familiar way.
Of course we could have introduced the filter completion of a preorder exactly
dually to the ideal completion and so avoided the need to introduce opposites
at this point. However, although the filter completion has exactly the same
mathematical content as the ideal completion, it is less familiar and so we have
chosen not to introduce it.

We end this subsection with a couple of technical lemmas. They are appli-
cations of the description just given of the points of Idl(Bop) and are required
for the final section.

Lemma 4.5.5. If A and B are two internal meet semilattices with A and B
discrete objects of C then

(i) C(Idl(Aop), Idl(Bop)) ∼= {B f→ SA | f a ∧ − SLat hom., α≥A
f = f},

(ii) If A = B then the image of the identity is p≥Bq : B → SB; and,
(iii) If h : B → A is a meet semilattice homomorphism then the image of

Idl(h)op : Idl(Aop) → Idl(Bop) under (i) is B
p(h×IdA)∗(≥A)q→ SA.

Proof. The order isomorphism follows by examining the case W = Idl(Aop) in
C(W, Idl(Bop)) ∼= ∧ − SLat(B → SW ) and recalling that SIdl(Aop) is the split

equalizer of SA

Id−→
−→
α≥A

SA. This splitting, SIdl(Aop)

εA
↪→
←−
δA

SA say, has the additional

properties that
(i) εA is a distributive lattice homomorphism; and,
(ii) δA = SeA♦A, where eA : Idl (Aop) ↪→ PLA as introduced before

lemma 4.4.5.
(See (ii)=⇒(iii) of Theorem 2 in [T05] for the order dual observations.) From

(i) we get that composition with εA defines an order isomorphism between
meet semilattice homomorphisms B → SIdl(Aop) and meet semilattice homo-
morphisms f : B → SA such that α≥Af = f . This complete our proof of the
assertion (i).

To prove that the image of the identity on Idl(Bop) is p≥Bq : B → SB we

must check that B
ĩB→ SIdl(Bop) εB

↪→ SB is equal to p≥Bq : B → SB where ĩB

is the double exponential transpose of Idl(Bop)
iB
↪→ SB . Since α≥B

factors as
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εBδB = εSeB♦B and α≥Bp∆Bq = p≥Bq it is sufficient, to complete a proof of
(ii), to check that ĩB = SeB♦Bp∆Bq. But eB is related to iB by

Idl(Bop)
eB
↪→ PL(B)

iB ↘ ↓∼=
SB

where the isomorphism PL(B) → SB is given by the double exponential trans-
pose of B

p∆Bq→ SB ♦B→ SPL(B) (see Lemma 4.2.5) and so we are done.
For (iii) note that by the definition of the functor Idl the image of Idl(h)op :

Idl(Aop) → Idl(Bop) is equal to the double exponential transpose of

Idl(Aop)
iA
↪→ SA Sh

−→ SB

followed by SIdl(Aop) εA
↪→ SA. I.e. equal to

B
h→ A

ĩA→ SIdl(Aop) εA
↪→ SA.

But we’ve already observed that εAĩA = p≥Aq and so this effectively completes
the proof since the exponential transpose of p≥Aqh classifies the open (h ×
IdA)∗(≥A).

Notation 4.5.6. We have established a relationship between maps Idl(Aop) →
Idl(Bop) of C and open relations on B×A. We shall follow a notation that if R
is such a relation then nR is the corresponding map from Idl(Aop) to Idl(Bop).

Lemma 4.5.7. With the notation just introduced,
(a) for any nR : Idl(Aop) → Idl(Bop)

SIdl(Bop) SnR−→ SIdl(Aop)

↓ εB ↓ εA

SB αR−→ SA

commutes; and,
(b) given nR : Idl(Aop) → Idl(Bop) and nR′ : Idl(Bop) → Idl(Cop)

nR′nR = nR′;R.

Proof. (a) Firstly

pRq = εASnR ĩB

= εASnRδBp∆Bq,

the first line by construction of nR and the second since δBp∆Bq = ĩB was
established in the previous lemma. Therefore εASnRδB = αR by Lemma 4.2.5.
So the result follows since δBεB = Id.
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(b) Under the order isomorphism (i) of the previous lemma the map C → SA

corresponding to nR′nR is given by the double exponential transpose of

Idl(Aop) nR→ Idl(Bop)
nR′→ Idl(Cop)

iC
↪→ SC

followed by SIdl(Aop) εA
↪→ SA. Using party (a) the map C → SA corresponding to

nR′nR is therefore given by

C
ĩC→ SIdl(Cop) Sn

R′−→ SIdl(Bop)

SIdl(Bop) εB
↪→ SB αR−→ SA

which is equal to C
pR′q−→ SB αR−→ SA, i.e. to pR′; Rq as required.

5 Applications

5.1 The fundamental theorem of topos theory

Before stating and proving the fundamental theorem of topos theory we recall
some facts about local homeomorphisms.

Definition 5.1.1. A morphism f : X → Y in C is a local homeomorphism
provided it is open and the diagonal X → X ×Y X is also open.

When C = Loc the usual definition for local homeomorphism is that X has
an open cover (ai)i∈I such that each ai ↪→ X

f→ Y is isomorphic to an open
of Y . However our definition is equivalent (see, for example, Lemma C3.1.15
of [J02]) and is also a good translation of the topological situation since a map
between topological spaces is a local homeomorphism if and only if it is open
and its diagonal is open.

For any object X in C we have that LH/X = DisC/X (see [T04] for the
axiomatic proof). We shall also need the following easy extension of this obser-
vation:

Lemma 5.1.2. If A is a discrete object of C then DisC/A = (DisC)/A.

Proof. Since LH/A = DisC/A, we must check two things: (i) for any local
homeomorphism f : Y → A, Y is necessarily discrete; and, (ii) for any discrete
B and for any map f : B → A, f is necessarily a local homeomorphism.

For (i), !Y : Y
f→ A

!A→ 1 must be open since both f and !A are, the latter by
assumption that A is discrete. The inclusion i : Y ×A Y ↪→ Y × Y is open since
it is the pullback (along Y ×Y

f×f→ A×A) of the open diagonal A ↪→ A×A. But
then the diagonal Y ↪→ Y × Y must be open since it is the composition of the
open Y → Y ×A Y (which is open by assumption that f is a homeomorphism)
and i. It follows that Y is discrete.

For (ii) firstly f must be open since it is a morphism between discrete objects.
But the diagonal B → B×AB is open since it is the pullback (along i : B×AB ↪→
B × B) of the open diapasonal B → B × B. This proves that f is a local
homeomorphism.
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For an elementary topos E , E is of course equivalent to the category of
discrete locales over E . In fact the inclusion E ↪→ LocE has a right adjoint:
send any locale X to the set LocE(1, X) (i.e. the set of points of X). What is
remarkable (and originally observed by Paul Taylor as part of his Abstract Stone
Duality programme) is that, in the other direction, if the inclusion DisC ↪→ C
has a right adjoint, then DisC is a topos.

Proposition 5.1.3. If the inclusion DisC ↪→ C has a right adjoint then DisC
is a topos.

We will use the notation ( )d : C → DisC for such a right adjoint if it exists.

Proof. A category is a topos provided it is cartesian and has power objects. We
have commented already that DisC is cartesian and so we are left checking that
DisC has power objects. For any discrete object A, let PA denote the object
(SA)d of DisC . To prove that this defines a power object of A we must find a
monomorphism ∈A↪→ PA × A such that for any monomorphism R ↪→ B × A
there exists a unique map r : B → PA such R is the pullback of ∈Aalong
r × IdA. Now all morphisms in DisC are open and all monomorphisms in
DisC are regular. The open regular monomorphisms in C are exactly the open
subobjects, and so SubDisC (B ×A) ∼= C(B ×A, S). So we have that

DisC(B, PA) ∼= C(B, SA)
∼= C(B ×A, S)
∼= SubDisC (B ×A).

This bijection is natural in B, so if ∈Ais defined as the mate of IdPA then
any monomorphism R ↪→ B × A is the pullback of ∈Aalong r × IdA, where
r : B → PA is the mate of R under the bijection.

The fundamental theorem of topos theory now becomes a categorical trivi-
ality:

Theorem 5.1.4. If E is an elementary topos and A is an object of E then E/A
is an elementary topos.

Proof. Firstly, as remarked before the last proposition, as E is a topos, E ↪→
LocE has a right adjoint. Now DisLocE/A ' E/A by the lemma and so it
is sufficient to find a right adjoint to the inclusion E/A ↪→ LocE/A. Define
( )dA

: LocE/A → E/A by sending an object f : X → A of LocE/A to (f)d :
Xd → Ad

∼= A. It is easy to verify that ( )dA
is the required right adjoint.

For the next section we will need the following basic lemma which is showing
that if ( )d exists right adjoint to the inclusion i : DisC ↪→ C then the induced
adjoint transpose can commute with exponential transpose (for functions to
power sets at least). Recall, of course, that a power set PA can be written as the
exponential ΩA where Ω is the subobject classifier (i.e. P1). For toposes we use
the standard notation χI : A → Ω for the map that classifies a monomorphism
I ↪→ A. This is in contrast to our notation for C where we have not distinguished
notationally between a ↪→ X, an open regular monomorphism, and a : X → S.
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Lemma 5.1.5. If i : DisC ↪→ C has a right adjoint then
(i) for any objects Y of C and A of DisC, Y A

d
∼= (Y A)d,

(ii) if R ↪→ C × B is a monomorphism in DisC then the mate of C
pχRq−→

SB
d
∼= (SB)d under the adjunction i a ( )d is C

pRq−→ SB where R : C × B → S
classifies the open R; and,

(iii) the conunit at S of the adjunction i a ( )d is the map > : (S)d → S that
classifies the open ‘true’, i.e. the top element of the subobject classifier (S)d.

Proof. (i) This is a routine diagram chase given that finite products of DisC are
created in C.

(ii) The mate of C
pRq−→ SB under the adjunction is C

pRqd−→ (SB)d (passing
through the isomorphism C ∼= Cd without notation). Under the isomorphism of
(i) the exponential transpose of C

pRqd−→ (SB)d
∼= SB

d is C × B
Rd−→ Sd. But ( )d

preserves the pullback
R → 1
↓ ↓ 1S

C ×B
R→ S

and so Rd = χR giving pRqd = pχRq as required.
(iii) is immediate from (ii) since the counit is the mate of identity.

5.2 Localic slice stability

We now embark on a proof that for any locale Y ,

LocSh(Y ) ' Loc/Y .

This result is of course well known, but its usual proof does require some un-
derstanding of constructions internal in a sheaf topos. Although we appear to
be able to dispense with most of the topos theory, it does not appear possible
to entirely dispense with sheaf theory as the following well known observations
are required:

Lemma 5.2.1. For any locale Y ,
(a) Sh(Y ) ' LH/Y ,
(b) the inclusion LH/Y ↪→ Loc/Y has a right adjoint. This right adjoint

( )dY
sends any Xf to the sheaf of sections, i.e. defined by

(Xf )dY (a) = {s : a → X | fs = a ↪→ Y }
for any open a ↪→ Y of Y ; and,

(c) if f : X → Y is a map of locales then the pullback functor f∗ : LH/Y →
LH/X is cartesian and has a right adjoint, denoted f∗ say. As an action on
sheaves, f∗(F )(a) = FΩf(a).

In part (c) we are following a notation whereby we use ΩX for the frame
corresponding to a locale X and are using Ωf : ΩY → ΩX for the frame
homomorphism corresponding to a locale map f : X → Y .
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Proof. Consult, for example, Ch. VI of [J82]. In (c), the right adjoint is the
direct image of the geometric morphism f : Sh(X) → Sh(Y ).

Note that for any locale map f : X → Y the adjunction f∗ a f∗ : LH/X ¿
LH/Y gives rise to an adjunction f∗ a f∗ : ∧ − SLatLH/X ¿ ∧ − SLatLH/Y

since both f∗ and f∗ are cartesian and so preserve the relevant structure.
Further note that, by exactly the same reasoning, in the situations where
i : DisC ↪→ C has a right adjoint ( )d, since i preserves finite products, there is
an induced adjunction: ∧ − SLatDisC ¿ ∧ − SLatC .

Part (b) tells us:

Proposition 5.2.2. For any locale Y , LH/Y is a topos.

Proof. This is immediate from 5.1.3 since LH/Y = DisLoc/Y .

Say D ≡(D, Id
↓−→ D,DD ∪−→ D) denotes the lower closed power set monad

on ∧−SLatLH/Y . So, relative to the topos LH/Y , for any internal semilattice
A, D(A) is the set of lower closed subsets of A. A frame is exactly an algebra
of D and a D-algebra homomorphism is exactly a frame homomorphism. Our
aim of proving

LocSh(Y ) ' Loc/Y .

therefore reduces to proving that

∧ − SLatDLH/Y ' Locop/Y .

We do this in two stages. Firstly we show that the functor IdlY ( )op : ∧ −
SLatLH/Y → Locop/Y has a monadic right adjoint (say denoted UY ). Secondly
we check that the induced monad, UY IdlY ( )op, is isomorphic to D.

Proposition 5.2.3. For any locale Y , IdlY ( )op : ∧ − SLatLH/Y → Locop/Y
has a monadic right adjoint.

Proof. If Xf is an object of Loc/Y define UY (Xf ) to be f∗((SX)dX
). If h :

X ′
f ′ → Xf is a morphism of Loc/Y then let UY (h) : f∗((SX)dX ) → f ′∗((SX′)dX′ )

be the map f∗(χ̃h∗>) where (̃ ) is adjoint transpose via h∗ a h∗. The map
> : 1X′ → (SX′)dX′ is the universal monomorphism in LH/X ′ which exists
since we have established that this category is a topos. The pullback (along
h) of this monomorphism is a monomorphisms and is therefore classified by a
map to (SX)dX and we are defining UY (h) to be the f∗ applied to the adjoint
transpose of this classifying map.

We now check that this provides a right adjoint to IdlY ( )op. For any object
Ag of ∧ − SLatLH/Y , we have that

∧ − SLatLH/Y (Ag, f∗((SX)dX
)) ∼= ∧ − SLatLH/X(f∗Ag, (SX)dX

)
∼= ∧ − SLatLoc/X(f∗Ag, SX)
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On the other hand

(Loc/Y )op(IdlY (Ag)op, Xf ) = (Loc/Y )(Xf , IdlY (Aop
g ))

∼= (Loc/X)(1, IdlX(f∗Aop
g ))

since the Idl construction is stable under change of base. This verifies that
IdlY ( )op a UY (Xf ) since by construction the points of IdlX(f∗Aop

g ) are exactly
the meet semilattice homomorphisms from f∗Ag to SY . The naturality of the
order isomorphisms involved is routine from our definition of UY on morphisms
since (lemma 5.1.5) the counit of the coreflection ( )d classifies the universal
monomorphism >.

For completeness we now check this naturality with respect to Xf . Say
t : Ag → UY (Xf ) and t̂ : Xf → IdlY (Aop

g ) is its mate. We are given h : X ′
f ′ →

Xf . Under the order isomorphisms between the homsets we have the following
mappings:

Ag
t→ UY (Xf )

UY (h)−→ UY (X ′
f ′)

Ag
t→ f∗((SX)dX

)
f∗(χ̃h∗>)−→ f ′∗((SX′)dX′ )

h∗(f∗Ag)
h∗(t)→ h∗((SX)dX

)
χh∗>−→ (SX′)dX′ t mate of t via f∗−!f∗

h∗(f∗Ag)
h∗(t)→ h∗((SX)dX )

χh∗>−→ (SX′)dX′
>′→ SX′

where the last line is because >′ is the conunit of the adjunction iX′ a dX′ , see

(iii) of 5.1.5. But h∗((SX)dX
)

χh∗>−→ (SX′)dX′
>′→ SX′ is equal to h∗> since this is

the open that it classifies and so we have that UY (h)t maps to h∗ applied to

f∗Ag
t→ (SX)dX

>→ SX .

On the other hand X ′
f ′

h→ Xf
t̂→ IdlY (Aop

g ) maps to the meet semilattice
homomorphisms

Ag → SXf

Y

Sh
Y−→ S

X′
f′

Y

f∗Ag
>t→ SX

Sh
X−→ SX′

h

X change base to X

h∗f∗Ag
h∗(>t)→ h∗(SX) change base to X ′.

This completes our check of naturality.
To verify that is UY monadic we check that (i) it has a left adjoint (clearly

done already), (ii) it reflects isomorphisms and (iii) (Loc/Y )op has and UY

preserves coequalizers of UY -split pairs (i.e. pairs h1, h2 : Xf → Zg such that
UY (h1), UY (h2) are part of a split coequalizer diagram in ∧ − SLatLH/Y .)

To prove (ii) and (iii) we use an explicit description of the sheaf correspond-
ing to UY (Xf ) and of the morphisms in Sh(Y ) corresponding to UY (h). Since
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( )dX is the functor that takes the sheaf of sections, as a sheaf we have that
(SX)dX

(a) ∼=↓ a for every open a ∈ ΩX. Therefore by the description of f∗
given in part (c) of the lemma we have that the sheaf corresponding to UY (Xf )
is

UY (Xf )(b) ∼=↓ Ωf(b)

for every b ∈ ΩY .
As for UY (h), note first that under the order isomorphism just established,

for any c ≤ Ωf(b), the point of f∗(SX)dX
corresponding to c is the adjoint

transpose (under f∗ a f∗) of χc : f∗b → (SX)dX . The image of c under UY (h)
is therefore the adjoint transpose (under (f ′)∗ a f ′∗) of

b
χc→ f∗((SX)dX

)
f∗(χ̃h∗>)−→ f ′∗((SX′)dX′ )

which is h∗(c). In other words, as a natural transformation (i.e. as a morphisms
in Sh(Y )), UY (h)(c) = Ωh(c) for any c ∈ UY (Xf )(b). Note that it is then
immediate, by considering b = 1, that UY is conservative and so (ii) is checked.

For (iii) certainly (Loc/Y )op has such coequalizers as Loc is cartesian. Say

Ee
i

↪→ Xf

h1−→
−→
h2

Zg is an equalizer diagram in Loc/Y such that there is a split

coequalizer

UY (Zg)
UY (h1)−→
−→

UY (h2)

UY (Xf )
γ
³ F

in Sh(Y ). We must check that F ∼= UY (Ee). Firstly note that for any open
b ↪→ Y ,

↓ Ωg(b)
Ωh1−→
−→
Ωh2

↓ Ωf(b) Ωi−→↓ Ωe(b)

is a frame coequalizer since the pullback of the equalizer diagram E
i

↪→ X

h1−→
−→
h2

Z

along the open Ωg(b) ↪→ Z is again an equalizer diagram in Loc. Now, for every
open b of Y we have that

UY (Zg)(b)
UY (h1)b−→
−→

UY (h2)b

UY (Xf )(b)
γb³ F (b) [∗]

is a split coequalizer diagram in ∧ − SLat and since the category of frames
is monadic over ∧ − SLat we have that [∗] is a coequalizer in the category of
frames. But

UY (Zg)(b)
UY (h1)b−→
−→

UY (h2)b

UY (Xf )(b)
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is isomorphic to

↓ Ωg(b)
Ωh1−→
−→
Ωh2

↓ Ωf(b)

and so F (b) ∼=↓ Ωe(b) ∼= UY (Ee)(b) for every b. Hence F ∼= UY (Ee) as required.
This completes the proof of (iii) and so shows that UY is monadic as required.

Clearly we want the monad defined in the proposition to be equivalent to
D on ∧ − SLatLH/X . In fact we know that we have the correct monad even
without going to the slice:

Proposition 5.2.4. If DisC ↪→ C has a right adjoint and Idl( )op : ∧ −
SLatDisC → Cop has a right adjoint (say denoted U), then the monad induced
on ∧ − SLatDisC is (naturally isomorphic to) the lower powerset monad D on
∧ − SLatDisC .

Proof. Firstly we check that for all meet semilattices A and B

∧ − SLatDisC (A,UIdl(Bop)) ∼= ∧ − SLatDisC (A,DB). (∗)

Note that DB is the split of PB

Id−→
−→
↓

PB where, of course, PB = (SB)d. Since

DB ↪→ PB is a meet semilattice homomorphism it is easy to check that

∧ − SLatDisC (A,DB) ∼= {f : A → PB | f ∧ −SLat hom. and ↓ f = f}.

Now ∧ − SLatDisC (A,UIdl(Bop)) ∼= {n : A → SB | n ∧ − SLat hom. and
α≥B

n = n} by Lemma 4.5.5. So to complete a proof (∗) we must but check that

↓= (α≥B )d (a)

since we have commented already that the adjunction i a ( )d : DisC
↪→
←− C

gives rise to an adjunction ∧ − SLatDisC
↪→
←− ∧−SLatC .

For (a) it is sufficient to show that for any monomorphism R ↪→ C × B of
DisC that ↓ pχRq = (α≥B )dpχRq. But by Lemma 5.1.5 the mate of (α≥B )dpχRq
under the adjunction i a ( )d is

C
pRq−→ SB

α≥B−→ SB

= C
pR;≥Bq−→ SB

Now C
pχRq−→ PB

↓−→ PB is equal to C
pχR;≥B

q−→ PB since relational compo-
sition is calculated in DisC and so uses the ; formulae developed. Therefore
↓ pχRq = (α≥B )dpχRq follows by another application of Lemma 5.1.5 and so
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(a) is established since we have argued with arbitrary R. Therefore we have es-
tablished (∗) and so have established a natural isomorphism φ : D → UIdl( )op.

The remainder of the proof checks that the monad structure induced by the
adjunction Idl( )op a U is naturally isomorphic to D. Note that by construction
φB is the adjoint transpose of the opposite of a map Idl(Bop) → Idl((DB)op)
which itself corresponds to the membership relation ∈B ↪→ DB × B. In other
words, using the notation 4.5.6, φB = ñop

∈B
where˜denotes taking adjoint trans-

pose via Idl( )op a U .
The unit of the monad induced by Idl( )op a U , evaluated at B, is given by

taking the adjoint transpose of the identity on Idl(Bop). Given Lemma 4.5.5 we

known that this corresponds to B
p≥Bq−→ SB and so to ↓: B → PB (lemma 5.1.5

since ↓= pχ≥B
q). Therefore the unit of the monad induced by Idl( )op a U

maps to the unit of D ≡(D, Id
↓−→ D,DD ∪−→ D) via (∗).

To complete the proof we must check that the union operation DD ∪−→ D
maps to UεIdl( )op via the natural isomorphism φ, where ε is the counit of the
adjunction Idl( )op a U . In other words we must verifying that the diagram

DDB
UIdl(φB)φDB−→ UIdl(UIdl(Bop))op

∪ ↓ ↓ UεIdl(Bop)

DB
φB−→ UIdl(Bop)

commutes. By taking adjoint transpose this amounts to checking that the dia-
gram

Idl(DDBop)
nop
∈DB−→ Idl(DBop)

Idl(φB)−→ Idl(UIdl(Bop))op

Idl(∪) ↓ ↓ εIdl(Bop)

Idl(DBop)
nop
∈B−→ Idl(Bop)

commutes in Cop. Now εIdl(Bop) is the adjoint transpose of the identity IdUIdl(Bop)

and since this identity factors as

UIdl(Bop)
φ−1

B−→ DB
φB−→ UIdl(Bop)

(and φB = ñop
∈B

) we get that εIdl(Bop) = nop
∈B

Idl(φ−1
B ). So we are left checking

that n∈DBn∈B = Idl(∪)opn∈B . By Lemma 4.5.7 n∈DBn∈B = n∈DB ;∈Band by
(iii) of Lemma 5.1.5 we get that the relation on DDB × DB corresponding to
Idl(∪)op is (isomorphic to) the pullback of ⊇DB ↪→ DB ×DB along ∪ × IdDB .
Since it is trivial to check that

∈DB ;∈B= [(∪ × IdDB)∗ ⊇DB ];∈B

we are done.

In summary we have now proved:

Theorem 5.2.5. For any locale Y , LocSh(Y ) ' Loc/Y .
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6 Concluding comments

It should be clear that the categorical axioms offered here are not as elegant as
could be hoped for. There is no claim in this work that the axioms represent the
best way of developing locale theory based purely on categorical assumptions.
For example, the interdependencies between the axioms have not been explored
and so some axioms may by redundant. The point of the work is rather that (a)
the axioms ‘do the job’ in the sense that they allow us to recover well known
constructions and results, (b) the theory is order dual and so simultaneously
covers both the theory of proper maps and the theory of open maps and (c) the
axioms are slice stable. This paper has focused on (c) and we have covered the
following aspects,

(i) the axiomatic framework is slice stable,
(ii) the fundamental theorem of topos theory can be recovered; and
(iii) the logical slice stability of locales can be proved using only some

basic assumptions from sheaf theory.
Along the way we have offered a new categorical proof of Vicker’s result that

PL(A) ∼= SA for discrete A and have developed, axiomatically, some well known
properties of the ideal completion locale construction. We end with a table of
the axioms together with some technical comments on them.
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Axiom Description Comment
1 Order enriched

cartesian
2 Stable distributive Necessity of slice stable phrasing open
3 Sierpiński exists Not canonical
4 Equalizers give rise

to coequalizers in
presheaves over C

Axiomatic version of the double cover-
age theorem. Equivalent to P preserving
coreflexive equalizers in the presence of
Axioms 7 and 9

5 S( ) reflects isomor-
phisms

5′ Distributive lattice
homs. SY → SX

are of the form Sf

for unique f : X →
Y

Strengthening of Axiom 5

6 S( ) takes regular
epimorphisms to
monomorphisms

In locale theory Sq is a regular
monomorphism for regular epi. q but
this strengthening is not required in ap-
plication.

7 Double exponentia-
tion over S exists

Existence necessary for the other two
power object and the ideal completion
constructions

8 Power monads are
KZ/coKZ

Implied by Cauchy completeness of
Kleisli categories. Implies that idem-
potent inflationary/deflationary Kleisli
morphisms split. This splitting (on the
lower side of the duality) gives ideal
completion.

9 Product is given by
tensor

Can be used to prove pullback stability
results. Open whether necessary as an
additional axiom.

7 Appendix

7.1 Product as join semilattice tensor

The following axiom is used in [T06]. It asserts that tensor exists in Cop
PL

and is
given by product in C. In the case that C = Loc this is well known since suplat-
tice tensor provides a description of frame coproduct (i.e. of locale product).

Axiom 9. For any objects X and Y of C, the map ⊗ : SX×SY → SX×Y

defined by uSX×Y(Sπ1 × Sπ2) is universal t− bilinear.
It is not immediate that this axiom extends beyond the binary case for

which it is given. Though we would expect, for example, that the map ⊗ :
SX×SY×SZ → SX×Y×Z is necessarily universal t− trilinear given the axiom,
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the usual proof of this fact does not work because the category Cop
PL

is not
cartesian closed. However, given Axiom 9, n-ary tensor does exist for n ≥ 2,
but proof of this seems to require a slightly involved lemma which we now
provide.

Lemma 7.1.1. Given Axiom 9 and any objects X, Y and Z of C the map
⊗ : SX×SY×SZ → SX×Y×Z defined by uSX×Y×Z(Id×uSX×Y×Z)(Sπ1×Sπ2×Sπ3)
is universal t− trilinear.

Proof. Certainly ⊗ : SX×SY×SZ → SX×Y×Z is join trilinear. We must show
that given any join trilinear ψ : SX×SY×SZ → SR that there exists a unique
join semilattice homomorphism δ : SX×Y×Z → SR such that δ⊗ = ψ.

Given any c : W×Z→ S and W ′ an object of C define

φc
W ′ : C(W ′ ×X, S)×C(W ′ × Y, S) →C(W ′ ×W ×R, S)

(a, b) 7→ ψW ′×W (aπ13, bπ13, cπ23)

It is routine to verify that this is natural in W ′ and further it is routine to
verify that the natural transformation φc : SX × SY → SW×R so defined is
join bilinear. By Axiom 9 there exists a unique join semilattice homomorphism
γc : SX×Y → SW×R such that γc⊗ = φc. By uniqueness note that for any
c1, c2 : W × Z → S, γc1tc2 = γc1 t γc2 and γ0 = 0. Also by uniqueness γc

is natural in c; if g : W2 → W1 and c : W1 × Z → S then for arbitrary W ′,
γ

c(g×IdZ)
W ′ (a⊗ b) equals

ψW ′×W2(aπ13, bπ13, c(g × IdZ)π23)
= ψW ′×W2(aπ13(IdW ′ × g × IdX), bπ13(IdW ′ × g × IdY ), cπ23(IdW ′ × g × IdZ))
= (IdW ′ × g × IdR)ψW ′×W1(aπ13, bπ13, cπ23)
= (IdW ′ × g × IdR)γc

W ′(a⊗ b)

which implies that Sg×IdRγc⊗ = γc(g×IdZ)⊗ and so Sg×IdRγc = γc(g×IdZ) by
uniqueness as Sg×IdR is a join semilattice homomorphism. This verifies our
claim that γc is natural in c.

We now use γc and its properties to define a join bilinear map SX×Y ×SZ →
SR which will therefore extend to our required map δ : SX×Y×Z → SR by
application of Axiom 9. For each object W of C define a map

ρW : C(W ×X × Y, S)×C(W × Z,S) →C(W ×R, S)
(I, c) 7−→ γc

W (I) ◦ (∆W × IdR)

This is natural in W (use the naturality of γc in c which we have just estab-
lished). The natural transformation ρ : SX×Y ×SZ → SR so defined is join bilin-
ear since γc is a join semilattice homomorphism and γc1tc2 = γc1tγc2 (and γ0 =
0). By Axiom 9 there exists a join semilattice homomorphism δ : SX×Y×Z → SR

such that δ⊗X×Y,Z = ρ where ⊗X×Y,Z : SX×Y × SZ → SX×Y×Z is the univer-
sal join bilinear tensor. The join trilinear tensor ⊗ : SX×SY×SZ → SX×Y×Z
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factors as ⊗ : SX×SY×SZ ⊗×Id→ SX×Y×SZ ⊗X×Y,Z

→ SX×Y×Z and so to complete
the existence part of this proof we must just check that

SX×SY×SZ ⊗×Id→ SX×Y×SZ

ψ ↘ ↓ ρ
SR

commutes. But for each W we have

ρW (a⊗ b, c) = γc
W (a⊗ b) ◦ (∆W × IdR)

= ψW×W (aπ13, bπ13, cπ23) ◦ (∆W × IdR)
= ψW (aπ13(∆W × IdX), bπ13(∆W × IdY ), cπ23(∆W × IdZ))
= ψW (a, b, c)

by naturality of ψ and so existence is established.
For uniqueness say δ′ : SX×Y×Z → SR is also a join semilattice homomor-

phism with δ′⊗ = ψ. For each c : W × Z → S define (γ′)c : SX×Y → SW×R

by

(γ′)c
W ′ : C(W ′ ×X × Y, S) →C(W ′ ×W ×R, S)
I 7−→ δ′W ′×W ⊗X×Y,Z

W ′×W (Iπ134, cπ23).

It is routine to verify that this is natural in W ′. The morphism (γ′)c so defined
is a join semilattice homomorphism since δ′ is.

By naturality δ′W ⊗X×Y,Z
W (I, c) = (γ′)c

W (I) ◦ (∆W × IdR) so the proof will
be complete provided we can show that (γ′)c = γc, since δW ⊗X×Y,Z

W (I, c) =
γc

W (I) ◦ (∆W × IdR) by construction. To show that indeed (γ′)c = γc it is
sufficient to check that we(γ′)c⊗ = γc⊗ i.e. that

δ′W ′×W ⊗X×Y,Z
W ′×W ((a⊗ b)π134, cπ23) = ψW ′×W (aπ13, bπ13, cπ23)

for all a : W ′×X → S and b : W ′×Y → S. Since δ′W ′×W⊗X×Y,Z
W ′×W (⊗W ′×W×Id) =

ψW ′×W by assumption (as the trilinear tensor factors as ⊗X×Y,Z
W ′×W (⊗W ′×W ×Id))

we therefore are left checking that ⊗W ′×W (aπ13, bπ13) = (a⊗ b)π134. This is a
routine unwinding of the definition of the natural transformation ⊗ : SX×SY →
SX×Y ;

⊗W ′×W (aπ13, bπ13) = uS(aπ123, bπ124)
= uS(aπ12, bπ13)π134

= ⊗W ′(a, b)π134

= (a⊗ b)π134.

Proposition 7.1.2. Assuming Axioms 1-4, Axiom 9 is slice stable.
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Proof. If A, B and C are objects of C/Y then we must check that any join
bilinear ψ : SA

Y × SB
Y → SC

Y extends uniquely, via ⊗ : SA
Y × SB

Y → SA×B
Y , to a

join semilattice homomorphism.
Firstly note that if A = XY and B = X ′

Y for some objects X and X ′ of C
then the result holds by change of base (from Y to 1). But for arbitrary Xf an
object of C/Y , there exists an equalizer diagram

Xf

(Id,f)
↪→ XY

f×Id−→
−→
∆Y π2

YY

in C/Y . The proof will therefore be complete provided we can show that the
axiom is stable under taking equalizers. For this it is sufficient to check, given

an equalizer diagram E
e

↪→ X

f→
→
g

Y in C and object Z of C with X, Y and Z

all satisfying the axiom, that E and Z also satisfy the axiom. Say that we are
given join bilinear ψ : SE × SZ → SW for some arbitrary object W . By the
lower coverage theorem join semilattice homomorphisms δ : SE×Z → SW are in
order isomorphism with join semilattice homomorphisms β : SX×Z → SW such
that

β uSX×Z (Id× Sf×IdZ ) = β uSX×Z (Id× Sg×IdZ ) (∗)

since E×Z
e×IdZ
↪→ X×Z

f×IdZ→
→

g×IdZ

Y ×Z is an equalizer diagram. In fact, condition

(∗) is equivalent to β composing equally with

SX×SZ×SY × SZ ⊗→ SX×Z×Y×Z S(π1,π2,fπ1,π2)−→ SX×Z (a)

and

SX×SZ×SY × SZ ⊗→ SX×Z×Y×Z S(π1,π2,gπ1,π2)−→ SX×Z (b)

by the previous lemma where the ⊗s are 4-ary tensors. But (a) factors as

SX×SZ×SY × SZ
uSY ×SZ (Id×Id×Sf×Id)−→ SX × SZ ⊗→ SX×Z (a’)

and (b) factors as

SX×SZ×SY × SZ
uSY ×SZ (Id×Id×Sg×Id)−→ SX × SZ ⊗→ SX×Z (b’)

and so since Se × Id : SX × SZ → SE × SZ composes equally with the first
factor of (a’) and the first factor of (b’) we have that the extension ψ(Se × Id) :
SX×Z → SW of the join bilinear map ψ(Se × Id) : SX × SZ → SW must factor

via SX×Z Se×IdZ→ SE×Z , and so there exists a join semilattice homomorphism
δ : SE×Z → SW with the property that δSe×IdZ = ψ(Se × Id). Certainly the
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diagram

SX×Z Se×IdZ→ SE×Z

⊗X,Z ↑ ⊗E,Z ↑
SX × SZ Se×Id−→ SE × SZ

commutes and so δ⊗E,Z (Se× Id) = ψ(Se× Id) and since, as in the proof of the
lower coverage theorem, Se × Id is a an epimorphism this shows that δ⊗E,Z =
ψ as required. The proof is therefore completed with the observation that
uniqueness is trivial since (i) Se×IdZ is an epimorphism and (ii), by assumption,
⊗X,Z is universal.

All of the results of [T06] are therefore slice stable. In particular, applying
those techniques to the exposition on subgroupoids contained within Theorem
5.3.1 of [J02], we conjecture that it can shown axiomatically that (i) any sub-
groupoid H of G with open domain and codomain maps is weakly closed over
the object object G0 of G and (ii) any subgroupoid H of G with proper domain
and codomain maps is fitted over the object object G0 of G.
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